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ZUSAMMENFASSUNG UND

AUSBLICK

Wir haben ein Verfahren zur Bere
hnung von Wenignukleonsystemen im Impulsraum

entwi
kelt, ohne eine Partialwellenzerlegung (PW Zerlegung) anzuwenden. Wir nennen

dies das dreidimensionale (3D) Verfahren. Wir begannen mit dem Nukleon-Nukleon (NN)

System und fuhren mit dem Dreinukleonstreuproze� (3N Streuproze�) fort. Dies war

speziell der Nd Aufbru
hsproze� in erster Ordnung in der NN T-Matrix. Das 3D Verfahren

war als eine vielverspre
hende Alternative zu der erfolgrei
hen PW Zerlegung beabsi
htigt,

da es si
h bei h�oheren Energien besser als ein auf Partialwellen basierendes Verfahren

eignen sollte. Hier fassen wir zusammen, sowohl wie wir das 3D Verfahren f�ur das NN

System und den Nd Aufbru
hsproze� entwi
kelten als au
h die Dur
hf�uhrung und die

Ergebnisse des 3D Verfahrens. Die Bere
hnungen in dieser Arbeit wurden basierend auf

den NN Potentialen AV18 [20℄ und Bonn-B [21℄ dur
hgef�uhrt. S
hlie�li
h geben wir einen

Ausbli
k auf weitere Untersu
hungen und au
h Entwi
klungen des 3D Verfahrens.

NN Streuproze�

Um das 3D Verfahren zu entwi
keln, war es notwendig, mit dem NN Streuproze� zu

beginnen, weil die NN T-Matrix der Input zur Bere
hnungen von komplexeren Wenignu-

kleonsystemen ist. Der erste S
hritt war es, 3D Basiszust�ande des NN Systems zu

de�nieren. Wir de�nierten Impuls-Helizit�at-Basiszust�ande, wel
he antisymmetris
h unter

Austaus
h zwis
hen den beiden Nukleonen im Impuls-, Spin- und Isospinraum sind. Wie

der Name sagt, wurden die Impuls-Helizit�at-Basiszust�ande aus Impulsvektorzust�anden

und Helizit�atszust�anden zum gesamten NN Spin konstruiert. Es wurden ni
ht die in-

dividuellen Spins der beiden Nukleonen sondern der NN Gesamtspin genommen. Dies

erm�ogli
hte es, eine kleinere Zahl von zu l�osenden Lippmann-S
hwinger-Glei
hungen

(LSG'en) zu erhalten. Die Symmetrieeigens
haften der T-Matrix- und der NN

Potentialmatrixelemente in den Impuls-Helizit�at-Basiszust�anden lassen die Reduzierung

v
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der Zahl der LSG'en f�ur die NN T-Matrix von 10 auf 5 f�ur jeden NN Gesamtisospinzustand

zu. Alle diese LSG'en im 3D Verfahren sind Integralglei
hungen in zwei Variablen. Diese

sind der Betrag des Relativimpulses zwis
hen den beiden Nukleonen und der Streuwinkel.

Das NN Potential wird dur
h eine Gruppe von se
hs unabh�angigen Operatoren, 
,

ausgedr�u
kt. Wir de�nierten die 
 Operatoren geeignet f�ur die Impuls-Helizit�at-Basis-

zust�ande, soda� eine sehr einfa
he Ausarbeitung der NN Potentialmatrixelemente

erm�ogli
ht wird. Wir leiteten eine Relation zwis
hen der Gruppe der 
 Operatoren und

der Gruppe der se
hs Operatoren, die als die Wolfenstein Operatoren [26℄ bekannt sind,

ab. Diese Gruppe von Operatoren wird �uber Invarianzen, eine Symmetriebedingung und

die Hermitizit�at des NN Potentials [41℄ einges
hr�ankt. Wir m�o
hten darauf hinweisen,

da� ein beliebiges in Operatorform gegebenes NN Potential im 3D Verfahren angewandt

werden kann. Repr�asentative Potentiale sind die AV18 und Bonn-B We
hselwirkungen,

die in dieser Arbeit angewandt wurden.

Um Observablen zu bere
hnen und sie mit NN Daten zu verglei
hen, verkn�upften

wir die T-Matrixelemente in den Impuls-Helizit�at-Basiszust�anden mit denen in einer

physikalis
hen Darstellung. Die physikalis
he Darstellung ben�utzt die Spins und Isospins

der individuellen Nukleonen, wobei die Spins bez�ugli
h einer beliebigen aber festen

z-A
hse quantiziert sind. Deshalb ist die physikalis
he Darstellung eng mit den

experimentellen Spineinstellungen eines NN Streuproze�es verbunden. Wir entwi
kelten

au
h die T-Matrixelemente in den Impuls-Helizit�at-Basiszust�anden in Partialwellen und

vergli
hen die NN Streuphasen aus den 3D Bere
hnungen mit den normalen PW

Bere
hnungen. Die

�

Ubereinstimmungen mit den PW Bere
hnungen sowohl f�ur NN

Streuphasen als au
h f�ur NN Observablen sind perfekt. Die Verglei
he in den NN

Observablen zeigten, da� viele Partialwellen besonders bei den h�oheren Energien in den

PW Bere
hnungen gebrau
ht werden, um Konvergenz der PW Bere
hnungen in bezug auf

die 3D Bere
hnungen zu erhalten. Zum Beispiel, bei E

lab

= 300 MeV mu� man in der PW

Bere
hnung f�ur den np di�erentiellen Wirkungsquers
hnitt mindestens j

max

= 16 nehmen,

wel
hes 98 LSG'en entspri
ht. Wir vergli
hen au
h unsere 3D Bere
hnungen sowohl mit

Observablen, die auf den Streuphasen basieren, wel
he in einer Partialwellenanalyse

(PWA) bestimmen wurden, als au
h direkt mit NN Daten bei Laborenergien, die h�oher als

300 MeV waren. Sp�ater, wenn wir den Nd Aufbru
hsproze� bei vers
hiedenen

Energien bere
hneten, brau
hten wir die NN T-Matrix au
h f�ur sol
he h�ohere Energien.

Da das 3D Verfahren f�ur alle Energien in glei
her Weise anzuwenden ist, waren die

Verglei
he beabsi
htigt, um die Anwendungen der zwei NN Potentiale AV18

und Bonn-B im 3D Verfahren bei h�oheren Energien zu testen. Obwohl diese zwei

parametrisierten NN Potentiale nur an NN Daten bei Energien, die niedriger als 350
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MeV sind, angepa�t wurden, zeigten die Verglei
he mit den Ergebnissen der PWA und

NN Daten trotzdem re
ht gute

�

Ubereinstimmungen.

Das Deuteron

Konventionell wird das Deuteron immer �uber gekoppelte Glei
hungen f�ur die Drehim-

pulse l = 0 und l = 2 bere
hnet. Es war interessant, zu untersu
hen, ob wir die

Impuls-Helizit�at-Basiszust�ande f�ur eine L�osung des NN Bindungszustandes benutzen

k�onnen. F�ur diesen Zwe
k projizierten wir den Deuteronzustand und die Eigenwert-

glei
hung auf die Impuls-Helizit�at-Basiszust�ande. Somit de�nierten wir Deuteronwellen-

funktionskomponenten, die dreidimensional in den Impuls-Helizit�at-Basiszust�anden sind.

Wir de�nierten au
h Deuteronwahrs
heinli
hkeitsdi
hten in den Impuls-Helizit�at-Basis-

zust�anden. Die abgeleiteten Deuteronglei
hungen in den Impuls-Helizit�at-Basiszust�anden

resultierten als zwei gekoppelte Integralglei
hungen in zwei Variablen, dem Betrag des

Relativimpulses zwis
hen den beiden Nukleonen und einem Winkel, der si
h auf eine be-

liebige z-Ri
htung bezieht. Wir verkn�upften die Deuteronwellenfunktionskomponenten in

den Impuls-Helizit�at-Basiszust�anden mit denen der PW Basiszust�ande. Diese Verbindung

erm�ogli
ht es, die auf Partialwellen projizierten Deuteronwellenfunktionskomponenten in

S- und D-Wellen aus den Deuteronwellenfunktionskomponenten in den Impuls-Helizit�at-

Basiszust�anden zu bere
hnen. Die Verglei
he mit den PW Bere
hnungen in den S- und

D-Wellen des Deuterons zeigten gute

�

Ubereinstimmungen.

Als n�a
hstes formulierten wir wieder die Deuteronglei
hung und die Deuteronwellen-

funktionskomponenten dur
h die Impuls-Helizit�at-Basiszust�ande auf eine andere Weise.

Zun�a
hst belie�en wir den Deuteronzustand in Partialwellen, und leiteten dann eine

Operatorform der Deuteronwellenfunktion im Impulsraum ab. Verm�oge der Impuls-

Helizit�at-Basiszust�ande f�uhrte die Deuteronwellenfunktion in Operatorform zu den

Deuteronwellenfunktionskomponenten in den Impuls-Helizit�at-Basiszust�anden, wel
he

jetzt aber analytis
hes Winkelverhalten hatten. Dieses analytis
he Winkelverhalten

best�atigte das numeris
h gefundene in der ersten Formulierung. Das analytis
he Winkel-

verhalten lie� es nun zu, die Deuteronglei
hung in nur einer Variablen, n�amli
h dem

Betrag des Relativimpulses zwis
hen den beiden Nukleonen, abzuleiten. Wir l�osten diese

Glei
hung und erhielten die glei
hen Ergebnisse wie die bei der ersten Formulierung. Au
h

hier stellten wir eine Verbindung mit der normalen PW Zerlegung her und bekamen gute

�

Ubereinstimmungen in den auf Partialwellen projizierten Deuteronwellenfunktionskompo-

nenten in S- und D-Wellen. Zuletzt untersu
hten wir in dreidimensionaler Weise �uber die

Deuteronwellenfunktion in Operatorform die Wahrs
heinli
hkeitsdi
hte mehrerer



viii Zusammenfassung und Ausbli
k

Spinkon�gurationen der zwei Nukleonen im Deuteron f�ur ein insgesamt polarisiertes

Deuteron.

Der Nd Aufbru
hsproze�

S
hlie�li
h kamen wir bei dem 3N System an und wir erweiterten das 3D Verfahren auf

den Nd Aufbru
hsproze�. Wir interessieren uns f�ur h�ohere Energien und ents
hieden uns,

nur den f�uhrenden Term der vollen Nd Aufbru
hsamplitude zu nehmen. Somit wollten

wir sehen, ob der f�uhrende Term allein den Nd Aufbru
hsproze� bei den betra
hteten

h�oheren Energien �uber ' 200 MeV Laborenergie des Nukleons ausrei
hend bes
hreiben

konnte. Wir wandten das Faddeev S
hema an, um den Nd Aufbru
hsproze� zu behandeln.

Der Einfa
hkeit halber belie�en wir den Deuteronzustand in Partialwellen. Das war ein

nat�urli
her S
hritt, da die Deuteronwellenfunktion nur zwei Partialwellenkomponenten

in S- und D-Wellen hat. Wir begannen damit, den f�uhrenden Term der vollen Nd Auf-

bru
hsamplitude in den 3N Basiszust�anden, wel
he in einer physikalis
hen

Darstellung waren, auszuarbeiten. Wie beim NN Streuproze� geht man in der

physikalis
hen Darstellung von Spins und Isospins der individuellen Nukleonen aus, die

entlang einer beliebigen aber festen z-A
hse quantiziert sind. Die Kinematik der drei

Nukleonen wurde von zwei Ja
obi Impulsen so bes
hrieben, da� das 3N System als ein

System betra
htet wurde, das aus einem Nukleon und einem 2N Subsystem besteht.

Symmetrieeigens
haften unter Austaus
h der drei Nukleonen wurden dur
h Permutation-

operatoren im f�uhrenden Term der vollen Nd Aufbru
hsamplitude eingef�uhrt. Als Folge

bekamen wir einen Ausdru
k des f�uhrenden Termes in den NN T-Matrixelementen in der

physikalis
hen Darstellung. Dur
h die vorher abgeleitete physikalis
he Darstellung der NN

T-Matrixelemente war es einfa
h, den f�uhrenden Term der vollen Nd Aufbru
hsamplitude

in den NN T-Matrixelementen in den Impuls-Helizit�at-Basiszust�anden zu erhalten. In

dem resultierenden Ausdru
k zeigten die 2N Anfangsrelativimpulse als Argumente der

NN T-Matrixelemente in den Impuls-Helizit�at-Basiszust�anden in beliebige Ri
htungen.

Um die NN LSG'en f�ur die NN T-Matrix zu l�osen, w�ahlen wir notwendigerweise eine

feste z-Ri
htung als die Ri
htung der NN Anfangsrelativimpulse. Deshalb drehten wir als

einen letzten S
hritt die NN T-Matrixelemente in den Impuls-Helizit�at-Basiszust�anden,

die si
h im f�uhrenden Term der vollen Nd Aufbru
hsamplitude be�nden, soda� die 2N

Anfangsrelativimpulse in eine feste z-Ri
htung zeigten. Diese Drehung f�uhrte zu einem

komplizierten zus�atzli
hen Phasenfaktor.

Mittel dieses f�uhrenden Termes der vollen Nd Aufbru
hsamplitude in den Impuls-

Helizit�at-Basiszust�anden bere
hneten wir Observablen. Da man bei h�oheren Energien mit
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relativistis
hen E�ekten re
hnen mu�te, nahmen wir einen weiteren S
hritt vor, n�amli
h

relativistis
he Kinematik in der Formulierung miteinzus
hlie�en. Wir leiteten jedo
h ni
ht

den f�uhrenden Term mit zus�atzli
hen relativistis
hen Strukturen ab, sondern ma
hten nur

einen ersten aber wi
htigen S
hritt, n�amli
h die ni
htrelativistis
hen Ja
obi Impulse und

Energieargumente des ni
htrelativistis
hen f�uhrenden Termes dur
h die relativistis
hen

Gr�o�en zu ersetzen. Als Folge �anderte si
h der f�uhrende Term. Zuletzt leiteten wir den

Wirkungsquers
hnitt entspre
hend der �ubli
hen relativistis
hen Streutheorie ab. Daher

�anderte si
h der Phasenraumfaktor des Wirkungsquers
hnittes vergli
hen mit dem der

ni
htrelativistis
hen Streutheorie.

Wir wandten die Formulierung des Nd Aufbru
hsprozesses in einem 3D Verfahren

auf die Proton-Neutron Ladungsaustaus
hreaktion im inklusiven pd Aufbru
hsproze�

an. In diesem Proze� wird ein Proton auf ein Deuteron ges
hossen, das dann auf-

bri
ht, und am Ende wird das Neutron detektiert, w�ahrend die zwei Protonen ni
ht

gemessen werden. Wir bere
hneten den spingemittelten di�erentiellen Wirkungsquer-

s
hnitt (kurz den Wirkungsquers
hnitt) und mehrere Spinsobservablen: die Polarisierung

des Neutrons, die Analysierst�arke des Protons und die PolarisierungstransferkoeÆzienten.

Wir diskutierten drei Aspekte unserer Bere
hnungen. Erstens vergli
hen wir unsere

Bere
hnungen mit den PW Bere
hnungen bei Laborenergien des Protons bis 197 MeV.

Es wurde gezeigt, da� unsere Bere
hnungen mit den PW Bere
hnungen bis E

lab

= 100

MeV no
h �ubereinstimmten. Es gab jedo
h s
hon eine Diskrepanz von ungef�ahr 1.7%

in der Spitze des Wirkungsquers
hnittes bei 100 MeV, wobei die PW Bere
hnungen 2N

Zust�ande von 2N Gesamtdrehimpulsen j � 7 und 3N Zust�ande von 3N Gesamtdrehim-

pulsen J � 31=2 ber�u
ksi
htigten. Mit dieser gro�en Zahl von Drehimpulszust�anden

in den PW Bere
hnungen errei
ht man tats�a
hli
h s
hon die Grenzen der heutzutage

m�ogli
hen PW Bere
hnungen. Bei E

lab

= 197 MeV stimmten unsere Bere
hnungen

ni
ht mit den PW Bere
hnungen basierend auf j � 7 und J � 31=2 �uberein, weil

die PW Bere
hnungen ni
ht ausrei
hend konvergierten, wie in einem Konvergenztest

gezeigt wurde. Der Test zeigte au
h, da� 2N Gesamtdrehimpulszust�ande f�ur die PW

Bere
hnungen f�ur die Konvergenz wi
htiger sind als 3N Gesamtdrehimpulszust�ande. F�ur

die glei
he Zahl von Gesamtdrehimpulszust�anden nehmen die Diskrepanzen zwis
hen un-

seren Bere
hnungen und den PW Bere
hnungen bei wa
hsender Energie s
hnell zu. Wir

kamen zum S
hlu�, da� PW Bere
hnungen bei E

lab

> 100 MeV ni
ht si
her benutzt

werden k�onnen, um den Nd Aufbru
hsproze� gut zu bes
hreiben.

Zweitens wollten wir zeigen, wie wi
htig Mehrfa
hstreue�ekte sind. Dazu vergli
hen

wir bei E

lab

= 197 MeV unsere Bere
hnungen mit den vollen Faddeev PW

Bere
hnungen, in wel
hen ni
ht nur der f�uhrende Term sondern au
h die Mehrfa
h-
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streuterme der vollen pd Aufbru
hsamplitude einges
hlossen wurden. Die Verglei
he

zeigten, da� Mehrfa
hstreue�ekte bei dieser Energie tats�a
hli
h eintreten und meistens

in dem Wirkungsquers
hnitt und der Analysierst�arke zu sehen sind. F�ur diese bei-

den Observablen f�uhrte der Eins
hlu� der Mehrfa
hstreuterme in den Bere
hnungen zu

Ergebnissen, die n�aher bei den Daten liegen. Wir kamen zum S
hlu�, da� Mehrfa
hstreu-

terme der vollen Nd Aufbru
hsamplitude bei E

lab

= 197 MeV in den Bere
hnungen

bea
htet werden m�ussen.

Bei Energien, die h�oher als 197 MeV sind, hatten wir keine vollen Faddeev PW

Bere
hnungen zur Verf�ugung, mit denen man verglei
hen konnte. Deshalb vergli
hen

wir direkt mit den Daten bei E

lab

= 346 und 495 MeV. Bei diesen Energien konnten wir

nur vermuten, da� Mehrfa
hstreuterme viellei
ht au
h ben�otigt sind, da Diskrepanzen mit

den Daten zu sehen waren.

S
hlie�li
h betra
hteten wir den E�ekt relativistis
her Kinematik in unseren

Bere
hnungen. Dazu vergli
hen wir unsere 3D Bere
hnungen in ni
htrelativistis
her und

relativistis
her Kinematik miteinander, und dies bei Energien von 197, 346 und 495 MeV,

wo au
h experimentelle Daten vorliegen. Bei diesen Energien sahen wir relativistis
he

E�ekte vor allem in den Wirkungsquers
hnitten und den Analysierst�arken. F�ur diese

beiden Observablen f�uhrte die relativistis
he Kinematik zu besseren Ergebnissen bez�ugli
h

der Daten. Die E�ekte wurden gr�o�er, wenn die Energie stieg, wel
hes man von

relativistis
hen E�ekten erwartet. Aus den Verglei
hen zu den Daten f�uhrten die

beoba
hteten relativistis
hen E�ekte zusammen mit den vorher gesehenen

Mehrfa
hstreue�ekten zu der Vermutung, da� in dem Energieberei
h von ' 200�500 MeV

beides notwendig ist, Mehrfa
hstreuterme und relativistis
he Korrekturen,

um den pd Aufbru
hsproze� besser zu bes
hreiben. Um herauszu�nden, bei wel
her

Energie relativistis
he E�ekte bereits wi
htig werden, vergli
hen wir unsere 3D

Bere
hnungen in ni
htrelativistis
her und relativistis
her Kinematik bei 16 and 65 MeV.

Wir fanden, da� relativistis
he E�ekte s
hon bei E

lab

= 65 MeV an�ngen, deutli
h

si
htbar zu werden.

Zum S
hlu� wollen wir unsere Arbeit in einem Abs
hnitt zusammenfassen. Wir

entwi
kelten ein 3D Verfahren f�ur den NN Streuproze�, das Deuteron und den Nd

Aufbru
hsproze�. Das 3D Verfahren erwies si
h als eine gute Alternative zu der PW

Zerlegung und ers
heint bei h�oheren Energien unauswei
hli
h. Im Gegensatz zu der PW

Zerlegung erfordert das 3D Verfahren viel weniger algebrais
he Arbeit. Bei niedrigen

Energien, wo die PW Bere
hnungen no
h zuverl�assig sind, zeigen die 3D Bere
hnungen

perfekte

�

Ubereinstimmungen mit den PW Bere
hnungen.
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Ausbli
k

Von der Stelle an, wo wir unsere Arbeit beendeten, gibt es no
h viele Untersu
hungen �uber

Wenignukleonsysteme, die im 3D Verfahren dur
hzuf�uhren sind. Im Fall des NN Systems

ist es interessant, neueste und in Zukunft ers
heinende NN Potentiale, wie z.B. das auf der


hiralen St�orungstheorie basierende NN Potential [60℄, im 3D Verfahren umzusetzen. Auf

Wenignukleonbindungssysteme mit Nukleonenzahlen gr�o�er als 2 sollte das 3D Verfahren

in jedem Fall angewandt werden, da das Triton [61, 62, 63℄, das �-Teil
hen [64, 65℄ und

andere no
h komplexere Wenignukleonbindungssysteme sehr viele Drehimpulszust�ande

enthalten. Bei dem 3N Streuproze� l�osten wir no
h ni
ht die volle Faddeev Glei
hung,

wel
hes aber, wie wir zeigten, erforderli
h ist. Wir ber�u
ksi
htigten au
h no
h ni
ht 3N

Kr�afte. Im Hinbli
k auf Relativit�at betra
hteten wir bis jetzt nur relativistis
he Kine-

matik. Wir ber�u
ksi
htigten no
h ni
ht die Lorentztransformation der NN T-Matrix [58℄

und die Wignerrotationen [59℄. Diese werden interessante und herausfordernde Unter-

su
hungen sein. Besonders bei Ber�u
ksi
htigung dynamis
her Merkmale von Relativit�at

wird das 3D Verfahren si
h als sehr lohnend erweisen. Aus unserer Si
ht wird der n�a
hste

S
hritt sein, die Mehrfa
hstreuterme der vollen Nd Aufbru
hsamplitude und 3N Kr�afte

zu ber�u
ksi
htigen, und zun�a
hst nur relativistis
he Kinematik anzuwenden. Dies wird

ein Gebiet h�oherer Energien zug�angli
h ma
hen, wel
hes bis jetzt no
h ni
ht gr�undli
h

untersu
ht wurde.
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Chapter 1

INTRODUCTION

The goal of this work is the development of a pra
ti
al and a

urate s
heme for few-

body 
al
ulations, whi
h does not rely on the traditionally preferred method of angular

momentum de
omposition.

The vast information about the nu
lear (or strong) intera
tion has been and still is

obtained with 
ollision experiments. Be
ause of the short range of the nu
lear intera
tion

and thus the small distan
es involved, 
ollision experiments testing the short-range part

of the strong for
e should be 
arried out at higher energies. Experimental e�orts at

the Kernfysikalis
he Versneller Institute (KVI) in the Netherlands, the Resear
h Center

for Nu
lear Physi
s (RCNP) in Japan, the Cooler Syn
hrotron (COSY) in Germany, the

Indiana University Cy
lotron Fa
ility (IUCF) in the United States, and other laboratories


on
entrate on probing the nu
lear for
e in a three-nu
leon (3N) 
ontext to �nd out if

the strong for
e a
ts only between two nu
leons at a time or if there is a signi�
ant


ontribution of a for
e a
ting dire
tly between three nu
leons.

Theory and 
al
ulations of three nu
leon systems have a long history. After the �rst

formulation of a basi
 s
heme by Faddeev [1℄ and a reformulation in terms of triads of

Lippmann-S
hwinger equations [2℄, the �rst appli
ations were 
arried out by Amado [3℄,


al
ulating low energy neutron-deuteron (nd) s
attering in a simple model based on rank 1

Yamagu
hi S-wave nu
leon-nu
leon (NN) potentials [4℄. This was followed up by allowing

for higher rank NN potentials, whi
h however did not yet in
lude the full 
omplexity of

NN for
es. The restri
tion to �nite rank NN for
es leads to a simpli�
ation, namely that

the amplitude in the Faddeev equations depended only on one 
ontinuous variable. This

was of 
ourse highly desirable at that time due to the limited 
omputer resour
es. For a

list of referen
es on those early investigations see Ref. [5℄.

With the advent of more realisti
 NN for
es, like e.g. the Paris [6℄, Nijmegen [7℄, Bonn

[8℄ and Argonne [9℄ potentials, whi
h were lo
al or non-lo
al in nature and therefore quite

1
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di�erent from �nite rank for
es, the 
hallenge was to employ them dire
tly, whi
h then

leads to a dependen
e on two 
ontinuous variables in the amplitudes of the 3N Faddeev

equations. Pioneering 
al
ulations along that line were 
arried out by the Utre
ht group

[10℄. All these investigations were 
on
erned with low energies in
luding the 3N bound

states. Here it was most natural to take advantage of 
onserved quantities in the 3N

system, e.g. the 
onservation of the total angular momentum, and set up the 
al
ulations

in a basis, where the basis states are eigenstates of the total angular momentum. Espe-


ially at low energies, only a few angular momenta (often only s-waves) are expe
ted to


ontribute to observables due to the angular momentum barrier.

During the last two de
ades 
al
ulations of nd s
attering based on momentum spa
e

Faddeev equations experien
ed enormous improvement and re�nement. It is fair to state

that below 200 MeV proje
tile energy the momentum spa
e Faddeev equations for 3N

s
attering now 
an be solved with very high a

ura
y for the most modern two and three

nu
leon for
es. A summary of these a
hievements is given in Ref. [5℄.

During the same two de
ades experimental fa
ilities with higher beam energy were

built, and older fa
ilities were either upgraded or seized to exist, with a few ex
eptions.

This is a natural trend if one wants to probe the strong intera
tion at shorter distan
es.

However, this trend to ever higher beam energies has a fatal 
onsequen
e for the tra-

ditional 3N s
attering 
al
ulations 
arried out in a partial wave (PW) trun
ated basis.

Working in an angular momentum basis means that 
ontinuous angle variables are re-

pla
ed by dis
rete orbital angular momentum quantum numbers. This redu
es the num-

ber of 
ontinuous variables, whi
h have to be dis
retized in a numeri
al treatment. For low

proje
tile energies this pro
edure appears physi
ally justi�ed due to arguments related to

the 
entrifugal barrier. Now going to high energies the algebrai
 and algorithmi
 work


arried out in a PW de
omposition 
an be quite involved when solving Faddeev equations.

The most 
ru
ial fa
t however is, that if one wants to 
onsider 3N s
attering at a few

hundred MeV proje
tile energy, the number of partial waves needed to a
hieve numeri
al


onvergen
e proliferates, and limitations with respe
t to 
omputational feasibility and

a

ura
y are being rea
hed. At this point, the method of PW de
omposition looses its

physi
al transparen
y, and using angular variables dire
tly be
omes more appealing. It

appears therefore natural to abandon PW representations 
ompletely and work dire
tly

with ve
tor variables. As an aside, this is 
ommon pra
ti
e in bound state 
al
ulations

based on variational [11℄ and Green's Fun
tion Monte Carlo (GFMC) methods [12℄, whi
h

are 
arried out in 
oordinate spa
e.

A momentum spa
e approa
h along this vein was pioneered for a system of three

bosons in Refs. [13, 14℄, where the momentum spa
e Faddeev equations were solved for
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the bound as well as the s
attering state.

The aim of this work is more ambitious. We want to employ realisti
 NN intera
tions

in our 
al
ulations. This means we have to in
orporate spin degrees of freedom into a

formulation of the Faddeev equations. Sin
e the �rst step to any Faddeev 
al
ulation is

the solution of the Lippmann-S
hwinger (LS) equation for the two-nu
leon T-matrix, this

will have to be our �rst fo
al point.

Although there are already suggestions in the literature how to solve the two-body LS

equations for realisti
 NN potentials without PW de
omposition [15, 16, 17℄ we prefer to

develop our own s
heme whi
h will be 
onsistent with our later use of the NN T-matrix

in 3N s
attering 
al
ulation. We 
hoose an approa
h based on the total heli
ity of the

NN system as spin variable. From our point of view this is the preferred starting point to

later progress to the 3N system. In this work we will not solve the full Faddeev equations

for three nu
leons, but rather 
onsider the �rst term in the multiple s
attering series built

up by the Faddeev equations, and 
on
entrate on break-up observables. Of parti
ular

interest are the spin-transfer 
oeÆ
ients in the (p,n) 
harge ex
hange rea
tion on the

deuteron, whi
h re
ently has been measured at IUCF [18℄ and RCNP [19℄. Sin
e these

measurements are 
arried out at `intermediate energies', i.e. 197 MeV and 346 MeV, the

�rst assumption is that it may be suÆ
ient to 
onsider only the �rst order term. However,

sin
e the proje
tile energies are already high, we will also 
onsider relativisti
 kinemati


e�e
ts.

The thesis is organized as follows. Chapter 2 is written only to provide a short review

of NN s
attering. There some de�nitions and quantities are introdu
ed, whi
h are used

in the next 
hapters.

In Chapter 3 we begin to develop the formulation for NN s
attering based on ve
tor

momenta and heli
ity eigenstates, in the following 
alled momentum-heli
ity basis states

and the formulation is shortly 
alled the 3D formulation. These basis states are de�ned

with all ne
essary symmetry properties for fermion states. We then de�ne six invari-

ant operators 
hara
terizing any Galilei invariant NN potential, whi
h is invariant under

parity, time-reversal and rotations. For our appli
ation we 
onsider two di�erent NN

potentials, the Argonne V18 (AV18) potential [20℄ as representative of the most modern

NN potentials des
ribing the NN data below 350 MeV with a �

2

=datum of � 1, and the

Bonn-B potential [21℄ as representative for a meson ex
hange potential. For our work it

is 
ru
ial that the potentials 
an be given either in dire
t operator form (AV18) or as

Feynman diagrams (Bonn-B). Other modern potentials, whi
h are �tted by parameters

that depend on partial waves, are not suited for our formulation.

In Chapter 4 we show results from our 
al
ulations for NN s
attering and dis
uss
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the NN potentials in some detail. We 
ompare some NN phase shifts obtained from the

3D 
al
ulations to those obtained from traditional PW 
al
ulations. We also show the

behavior of the T-matrix elements and 
ompare NN s
attering observables to data and

to the results of the PW 
al
ulations.

In Chapter 5 we formulate a 3D approa
h for the deuteron using momentum-heli
ity

basis states. We derive two formulations. The �rst is based on a 3D ansatz, while the

se
ond one is a mixture of 3D and PW te
hniques. For both formulations we intro-

du
e a set of 3D deuteron wave fun
tion 
omponents and derive the deuteron eigenvalue

equation. In the se
ond formulation we derive the deuteron wave fun
tion in operator

form. Proje
ted onto the momentum-heli
ity basis states this lead to the 3D deuteron

wave fun
tion 
omponents with analyti
 angular behavior. We perform 
al
ulations for

both formulations and 
onne
t the numeri
al results to standard PW 
al
ulations. Finally,

using the deuteron wave fun
tion in operator form, we investigate some spin 
on�gurations

of the two nu
leons inside the deuteron.

In Chapter 6 we formulate the nu
leon-deuteron (Nd) break-up pro
ess in a 3D, non-

relativisti
 Faddeev s
heme. We derive the leading term of the full Nd break-up amplitude

in the momentum-heli
ity basis. The leading term is given in terms of the T-matrix

elements. Then we in
lude relativisti
 kinemati
s in the formulation and derive the 
ross

se
tion a

ording to relativisti
 s
attering theory. The appli
ation of relativisti
 kine-

mati
s a�e
ts not only the phase spa
e fa
tor of the 
ross se
tion but also the leading

term of the full Nd break-up amplitude.

In Chapter 7 we show results from our 3D 
al
ulations for the (p,n) 
harge ex
hange

rea
tion in the in
lusive proton-deuteron (pd) break-up pro
ess. In this pro
ess a proton

is dire
ted towards a deuteron, whi
h then breaks up, and �nally the neutron is dete
ted,

while the two protons are not dete
ted. We show the spin averaged di�erential 
ross

se
tion and some spin observables, whi
h are the neutron polarization, the proton ana-

lyzing power and the polarization transfer 
oeÆ
ients. We begin with 
omparisons to the

PW 
al
ulations at various energies below 200 MeV and test the 
onvergen
e of the PW


al
ulations for energies up to ' 200 MeV. Next we 
ompare at ' 200 MeV to the full

Faddeev PW 
al
ulations, whi
h in
lude also the res
attering terms of the Nd break-up

amplitude, and 
he
k the importan
e of res
attering terms at energies ' 200 MeV. Un-

fortunately for energies higher than 200 MeV there is no full Faddeev PW 
al
ulation to


ompare with. Therefore, we 
ompare our results up to ' 500 MeV dire
tly to the data.

Last but not least we 
ompare between our 3D 
al
ulations with and without relativis-

ti
 kinemati
s, and �nd that as expe
ted the importan
e of the relativisti
 kinemati
s

in
reases with in
reasing energy. Finally we summarize in Chapter 8.



Chapter 2

SCATTERING OF TWO

NUCLEONS

This 
hapter is not meant as a thorough presentation of s
attering theory for two nu
leons

or even more general for two parti
les sin
e that is already given at many pla
es su
h as

quantum me
hani
s textbooks and those spe
ializing in s
attering pro
esses, for example

Ref. [22℄. In fa
t, 
ompa
t presentations of two nu
leon (2N) s
attering 
an be found

in Refs. [23, 24, 25℄. Hen
e, the presentation here will be even more 
ompa
t and this


hapter is meant for pra
ti
al purpose and to give a short summary of ne
essary formulas.

In addition, de�nitions of some terminologies and quantities used in the next 
hapters 
an

be found here.

2.1 Kinemati
s of the Two-Nu
leon System in La-

boratory and Center of Mass Referen
e Frames

A proton and a neutron are 
ommonly 
alled nu
leon. Though the proton mass m

p

=

938:272 MeV di�ers from the neutron mass m

n

= 939:56533 MeV, this di�eren
e is

relatively small (� 0.14%). Therefore, the 'nu
leon mass' m may be given by the average

of m

p

and m

n

.

Let k

i

and k

0

i

be the nu
leon's momentum in the laboratory referen
e frame (laboratory

frame) in initial and �nal state, respe
tively, where i = 1; 2 indi
ates the i

th

nu
leon. The


orresponding nonrelativisti
 energies are denoted by E

i

and E

0

i

, respe
tively. Assuming

nu
leon 1 is the proje
tile and nu
leon 2 is the target (k

2

= 0), the momentum situation


an be displayed by Fig. 2.1, where �

lab

is the s
attering angle in the laboratory frame. The

�gure also shows quantities belonging to the 
enter of mass referen
e frame (
.m. frame),

5
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θlab

q’
k

k’

1

1
a circle of radius q representing

= q
2

2

energy conservation

θ

k’2

Figure 2.1: The initial and �nal momenta, both in laboratory and 
.m. frames, in a 2N

s
attering pro
ess, where nu
leon 1 a
ts as the proje
tile and nu
leon 2 as the target

(k

2

= 0). The 
ir
le of radius q represents the energy 
onservation.

i.e. the s
attering angle � and the relative momentum between the two nu
leons in initial

and �nal states, q =

1

2

k

1

and q

0

=

1

2

(k

0

1

� k

0

2

), respe
tively. It is 
lear that � = 2�

lab

.

The total energy in the laboratory frame (E

lab

) and that in the 
.m. frame (E


m

) are

E

lab

= E

1

= E

0

1

+ E

0

2

(2.1)

E

lab

=

k

2

1

2m

=

k

02

1

2m

+

k

02

2

2m

(2.2)

E


m

=

q

2

2�

=

q

2

m

=

q

02

m

; (2.3)

where � =

1

2

m is the redu
ed mass of the 2N system. E


m

together with the energy of

motion of the 
enter of mass of the two nu
leons sum up to E

lab

and 
onsequently we 
an

get the relation between E

lab

and E


m

E

lab

=

(k

0

1

+ k

0

2

)

2

4m

+ E


m

=

k

2

1

4m

+ E


m

=

1

2

E

lab

+ E


m

= 2E


m

; (2.4)

whi
h 
an also be dire
tly seen from the fa
t that k

1

= 2q. Note that this relation between

E

lab

and E


m

is 
orre
t if one of the two nu
leons is initially (or �nally) at rest.
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2.2 S
attering Matrix and Lippmann-S
hwinger Equ-

ation

The essential information of a nu
leon-nu
leon (NN) s
attering pro
ess is 
ontained in

the s
attering matrix. There are T-matrix, S-matrix, M-matrix and these matri
es are

related to ea
h other as

S = 1� 2�iÆ(E

0

� E)T (2.5)

M = ��(2�)

2

T: (2.6)

The delta fun
tion in the expression for the S-matrix indi
ates that the S-matrix is an

on-the-energy-shell (on-shell) quantity whereas the other two s
attering matri
es are not

a�e
ted by this restri
tion and therefore have o�-shell as well as on-shell properties. We

solve for the T-matrix in our NN s
attering 
al
ulations and later use it as input for our

3N 
al
ulations, where the T-matrix appears as an o�-shell quantity.

The T-matrix obeys the equation

T = V + V G

0

T; (2.7)

whi
h is the Lippmann-S
hwinger Equation (LSE) for the T-matrix. V is the matrix

operator of the NN potential, G

0

(z) = (z � H

0

)

�1

is the free propagator with H

0

being

the free Hamiltonian and z a 
omplex number. The s
attering wave is spreading out

from the s
attering 
enter, and for an outgoing wave the 
orresponding free propagator

is G

+

0

(E) � lim

�!0

G

0

(E + i�), where E is the energy at whi
h the s
attering o

urs and

the limit 
an be understood as to bring z 
lose to the physi
al spe
trum of H

0

.

The T-matrix element is de�ned as

T (q

0

; �

0

;q; �) � hq

0

; �

0

jT jq; �i ; (2.8)

with �, �

0

being the dis
rete quantum numbers 
onsidered, like spin and isospin, and

jq; �i, jq

0

; �

0

i representing the initial, �nal state of the 2N system, respe
tively. A similar

de�nition applies also to the NN potential matrix element

V (q

0

; �

0

;q; �) � hq

0

; �

0

jV jq; �i : (2.9)

With the 2N states jq; �i being 
omplete

X

�

Z

dq jq; �i hq; �j = 1; (2.10)
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it is straightforward that the LSE for the T-matrix element, whi
h is the main equation

in the 
al
ulations, is given by

T (q

0

; �

0

;q; �) = V (q

0

; �

0

;q; �) +

X

�

00

Z

dq

00

V (q

0

; �

0

;q

00

; �

00

)G

+

0

(E

q

)T (q

00

; �

00

;q; �); (2.11)

with

G

+

0

(E

q

) = lim

�!0

1

E

q

+ i�� E

q

00

E

q

�

q

2

m

E

q

00

�

q

00

2

m

: (2.12)

2.3 Cross Se
tion and Spin Observables

Here we spe
ify the quantum number � in the 2N state jq; �i as the magneti
 spin

quantum numbers of both nu
leons

jq; �i = jq; m

s1

m

s2

i ; (2.13)

with m

si

= �

1

2

(i = 1, 2). Thus, there are four spin states whi
h 
onstitute a 
omplete

basis, in whi
h any spin state of the two nu
leons 
an be given. A general pure state

jq; ni 
an be written as

jq; ni =

1

2

X

m

s1

;m

s2

=�

1

2

a

(n)

(m

s1

; m

s2

) jq; m

s1

m

s2

i : (2.14)

With regard to spin the state jq; ni is a ve
tor of four 
omponents and the T-matrix

element given in Eq. (2.8) is a 4 x 4 matrix. The general spin operator for su
h a state is

also a 4 x 4 matrix and may be 
hosen as a produ
t of two 2 x 2 matri
es

�

(1)

�

�

(2)

�

� �

(1)

�


 �

(2)

�

; (�; � = 0; 1; 2; 3); (2.15)

with �

0

and �

i

(i = 1,2,3) being a matrix of one and the Pauli matri
es, respe
tively:

�

0

=

0

�

1 0

0 1

1

A

; �

1

=

0

�

0 1

1 0

1

A

; �

2

=

0

�

0 �i

i 0

1

A

; �

3

=

0

�

1 0

0 �1

1

A

; (2.16)

and the upper indi
es 1, 2 denoting the nu
leon on the state of whi
h the �

�

operator

works.

In experiments we deal not only with two nu
leons but many more in the beam and

the target. Therefore, the state is a mixed state of pure 2N states as given in of Eq. (2.14),

and the expe
tation value of an observable hOi is 
al
ulated by mean of a density matrix

�

� �

X

n

jni p

n

hnj ; (2.17)
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where p

n

is the normalized probability of the n

th

pure spin state a

ording to Eq. (2.14)

jni �

1

2

X

m

s1

;m

s2

=�

1

2

a

(n)

(m

s1

; m

s2

) jm

s1

m

s2

i : (2.18)

For instan
e, in the �nal state:

hOi =

Tr f�

f

Og

Tr f�

f

g

; (2.19)

with

�

f

= �nal density matrix

= M�

i

M

y

(2.20)

�

i

= initial density matrix.

Using Eq. (2.19) one derives the expression for the expe
tation value of a general spin

observable

D

�

(1)

�

�

(2)

�

E

f

in the �nal state in relation to the values

D

�

(1)

�

�

(2)

�

E

i

in the initial

state

I

D

�

(1)

�

�

(2)

�

E

f

=

1

4

X

�;�

D

�

(1)

�

�

(2)

�

E

i

Tr

n

M�

(1)

�

�

(2)

�

M

y

�

(1)

�

�

(2)

�

o

; (2.21)

where I is the di�erential 
ross se
tion summed over all possible �nal spin states

I =

X

j

d�

j

d


=

Tr f�

f

g

Tr f�

i

g

=

1

4

X

�;�

D

�

(1)

�

�

(2)

�

E

i

Tr

n

M�

(1)

�

�

(2)

�

M

y

o

(2.22)

(in the last equality Eq. (2.21) is applied again).

The simplest 
ase is if the beam and target are unpolarized and no spin measurements

in the �nal state are made. In this 
ase one measures the spin averaged di�erential 
ross

se
tion

I

0

=

1

4

Tr

n

MM

y

o

: (2.23)

The spin proje
tions on a 
ertain axis must be spe
i�ed and therefore unit ve
tors are

needed. Sin
e there are two referen
e frames - laboratory and 
.m. frames - two sets of

unit ve
tors are de�ned, one set for ea
h frame. But as 
an be 
he
ked in Ref. [25℄ for the

2N system the two sets are the same:

unit ve
tors for the initial state :

8

<

:


.m. frame :
^
q;

^

N;

^

N�
^
q

laboratory frame :

^

l;
^
n;

^
s

(2.24)

unit ve
tors for the �nal state :

8

<

:


.m. frame :

^

P;

^

N;

^

K

laboratory frame :

^

l

0

;
^
n

0

;
^
s

0

(2.25)
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with

^
n =

^
n

0

�

^

k

1

�

^

k

0

1

j

^

k

1

�

^

k

0

1

j

=

^

N �

q� q

0

jq� q

0

j

(2.26)

^

l �

^

k

1

=
^
q (2.27)

^
s �

^
n�

^

l =

^

N�
^
q (2.28)

^

l

0

�

^

k

0

1

=

^

P �

q+ q

0

jq+ q

0

j

(2.29)

^
s

0

�
^
n

0

�

^

l

0

=

^

K �

q

0

� q

jq

0

� qj

: (2.30)

In 
onne
tion with a Cartesian 
oordinate system the beam's momentum k

1

is set typi
ally

to point along the positive z-axis and the s
attered nu
leon's momentum k

0

1

is in the

xz-plane. Thus, the s
attering takes pla
es in the xz-plane and the unit ve
tors are

^

l =

0

B

B

B

�

0

0

1

1

C

C

C

A

;
^
s =

0

B

B

B

�

1

0

0

1

C

C

C

A

;
^
n =

^
n

0

=

0

B

B

B

�

0

1

0

1

C

C

C

A

;

(2.31)

^

l

0

=

0

B

B

B

�

sin �

lab

0


os �

lab

1

C

C

C

A

;
^
s

0

=

0

B

B

B

�


os �

lab

0

� sin �

lab

1

C

C

C

A

:

A

ording to Eq. (2.21) there seems to be 16 x 16 = 256 possible initial-to-�nal

spin transitions in a NN s
attering pro
ess. Rotational, parity, time-reversal and isospin

invarian
es (the last one together with parity invarian
e lead to spin invarian
e), however,

forbid many transitions and moreover 
ause some permitted transitions to be related to

ea
h other. Under these invarian
es the s
attering matrix M 
an be expressed in terms of

a few parameters 
alled Wolfenstein parameters [26, 23℄ (a; 
;m; g; h), whi
h depend on

the magnitudes q

0

of �nal and q of initial relative momenta as well as the angle between

the two momenta q

0

and q

M = a+ 
(�

(1)

+ �

(2)

) �

^

N+m(�

(1)

�

^

N)(�

(2)

�

^

N)

+(g + h)(�

(1)

�

^

P)(�

(2)

�

^

P) + (g � h)(�

(1)

�

^

K)(�

(2)

�

^

K) (2.32)

a =

1

4

T

r

fMg (2.33)


 =

1

8

TrfM�

(1)

y

+M�

(2)

y

g (2.34)

m =

1

4

TrfM�

(1)

y

�

(2)

y

g (2.35)
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g =

1

8

TrfM�

(1)

x

�

(2)

x

+M�

(1)

z

�

(2)

z

g (2.36)

h =

1

8

Trf[�M�

(1)

x

�

(2)

x

+M�

(1)

z

�

(2)

z

℄ 
os � + [M�

(1)

x

�

(2)

z

+M�

(1)

z

�

(2)

x

℄ sin �g (2.37)

Note that these expressions for the Wolfenstein parameters are for the 
hosen xz-s
attering

frame, see Eq. (2.31). The NN s
attering observables 
an be 
al
ulated using M dire
tly

or the Wolfenstein parameters.

Finally, we 
lose this 
hapter by showing brie
y seven typi
al types of experiments

and the 
orresponding spin observables. Comprehensive des
riptions of these experiments


an be found in Ref. [23℄. The experiments are denoted by the rea
tions as

1: N2(N1; N1)N2 2: N2(N1;

~

N1)N2 3: N2(

~

N1; N1)N2 4: N2(

~

N1;

~

N1)N2

5: N2(

~

N1; N1)

~

N2 6: N2(N1;

~

N1)

~

N2 7:

~

N2(

~

N1; N1)N2;

where N1 and N2 stand for nu
leon 1 (the proje
tile) and nu
leon 2 (the target),

respe
tively, the little arrows over N1 or N2 mean that the 
orresponding nu
leon is

polarized or that the polarization of that nu
leon is measured. Let us take for example

the �fth experiment: N2(

~

N1; N1)

~

N2. This rea
tion means that a polarized proje
tile

(

~

N1) is dire
ted to an unpolarized target (N2) and �nally the polarization of the re-


oil nu
leon (

~

N2) is measured. The polarization of the s
attered nu
leon (N1) is not

measured. Note that pro
esses 4 and 5 are only distinguishable for a np system.

In the �rst experiment the beam and target are unpolarized and no spin measurement

on the outgoing nu
leons are made. One measures only the spin averaged 
ross se
tion

I

0

=

1

4

Tr

n

MM

y

o

= jaj

2

+ jmj

2

+ 2j
j

2

+ 2jgj

2

+ 2jhj

2

: (2.38)

In the se
ond experiment the beam and target are unpolarized. The polarization

of the s
attered nu
leon is of interest and therefore after the pro
ess one measures the

spin dire
tion of this nu
leon. A

ording to the general formula for spin observables

(Eq. (2.21)) the polarization P

0

=

D

�

(1)

E

=

D

�

(1)

�

(2)

0

E

of the s
attered nu
leon is

P

0

=

1

4I

0

Tr

n

MM

y

�

(1)

o

=
^
n

1

4I

0

Tr

n

MM

y

�

(1)

n

o

=
^
n

2Ref(a +m)


�

g

I

0

; (2.39)

where I

0

is the spin averaged 
ross se
tion given in Eq. (2.38). Parity invarian
e a�e
ts

the pro
ess su
h that the polarization must be normal to the s
attering plane.
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The third experiment is to measure the asymmetry A

LR

de�ned as

A

LR

�

I

L

� I

R

I

L

+ I

R

; (2.40)

where I

L

= I(�; �) and I

R

= I(�; � + �) are the left-s
attering and right-s
attering 
ross

se
tions, respe
tively. A polarized beam is dire
ted to an unpolarized target. Due to

parity invarian
e a 
ontribution to the 
ross se
tion arises only if the polarization is

normal to the s
attering plane. The 
ross se
tion is

I =

1

4

3

X

�=0

D

�

(1)

�

E

i

Tr

n

M�

(1)

�

M

y

o

= I

0

+

1

4

P

i

�
^
nTr

n

M(�

(1)

�
^
n)M

y

o

(2.41)

and the left- and right-s
attering 
ross se
tions are

I

L

= I

0

+

1

4

P

i

�
^
nTr

n

M(�

(1)

�
^
n)M

y

o

(2.42)

I

R

= I

0

�

1

4

P

i

�
^
nTr

n

M(�

(1)

�
^
n)M

y

o

: (2.43)

Therefore,

A

LR

=

P

i

�
^
nTr

n

M(�

(1)

�
^
n)M

y

o

4I

0

= P

i

�
^
nA

n

; (2.44)

with

A

n

=

1

4I

0

Tr

n

M(�

(1)

�
^
n)M

y

o

=

2Ref(a+m)


�

g

I

0

= P

0

: (2.45)

This quantity A

n


alled analyzing power is often denoted by A

y

, sin
e
^
n = ŷ for the

typi
al s
attering frame given in Eq. (2.31).

In experiment 4 one starts with a polarized beam and an unpolarized target and �nally

measures the polarization of the s
attered nu
leon, P

f

=

D

�

(1)

E

IP

f

=

1

4

3

X

�=0

D

�

(1)

�

E

i

Tr

n

M�

(1)

�

M

y

�

(1)

o

= I

0

P

0

+

1

4

P

i

� Tr

n

M�

(1)

M

y

�

(1)

o

= I

0

n

^
n [P

0

+D(P

i

�
^
n)℄ +

^

l

0

h

A

0

(P

i

�

^

l) +R

0

(P

i

�
^
s)

i

+
^
s

0

h

A(P

i

�

^

l) +R(P

i

�
^
s)

io

: (2.46)
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Here we meet other spin observables, summarized in the depolarization tensor D

ij

, whi
h

is de�ned as

I

0

D

ij

�

1

4

Tr

n

M(�

(1)

�

^

j)M

y

(�

(1)

�

^

i)

o

; (2.47)

and the observables D;R;R

0

; A; A

0

appearing in the polarization

~

P

f

are

I

0

D � I

0

D

nn

=

1

4

Tr

n

M(�

(1)

�
^
n)M

y

(�

(1)

�
^
n)

o

= jaj

2

+ jmj

2

+ 2j
j

2

� 2jgj

2

� 2jhj

2

(2.48)

I

0

R � I

0

D

s

0

s

=

1

4

Tr

n

M(�

(1)

�
^
s)M

y

(�

(1)

�
^
s

0

)

o

= (jaj

2

� jmj

2

� 4Refgh

�

g) 
os

�

2

� 2Imf(a�m)

�


g sin

�

2

(2.49)

I

0

R

0

� I

0

D

l

0

s

=

1

4

Tr

n

M(�

(1)

�
^
s)M

y

(�

(1)

�

^

l

0

)

o

= (jaj

2

� jmj

2

+ 4Refgh

�

g) sin

�

2

+ 2Imf(a�m)

�


g 
os

�

2

(2.50)

I

0

A � I

0

D

s

0

l

=

1

4

Tr

n

M(�

(1)

�

^

l)M

y

(�

(1)

�
^
s

0

)

o

= �(jaj

2

� jmj

2

� 4Refgh

�

g) sin

�

2

� 2Imf(a�m)

�


g 
os

�

2

(2.51)

I

0

A

0

� I

0

D

l

0

l

=

1

4

Tr

n

M(�

(1)

�

^

l)M

y

(�

(1)

�

^

l

0

)

o

= (jaj

2

� jmj

2

+ 4Refgh

�

g) 
os

�

2

� 2Imf(a�m)

�


g sin

�

2

: (2.52)

Experiment 5 is similar to experiment 4 and 
an be distinguished only in a np system.

One starts with a polarized beam and an unpolarized target but �nally one measures the

polarization of the re
oil nu
leon P

f

=

D

�

(2)

E

IP

f

=

1

4

3

X

�=0

D

�

(1)

�

E

i

Tr

n

M�

(1)

�

M

y

�

(2)

o

= I

0

P

0

+

1

4

P

i

� Tr

n

M�

(1)

M

y

�

(2)

o

= I

0

n

^
n [P

0

+D

t

(P

i

�
^
n)℄ +

^

l

0

h

A

t

(P

i

�

^

l) +R

t

(P

i

�
^
s)

i

+
^
s

0

h

A

0

t

(P

i

�

^

l) +R

0

t

(P

i

�
^
s)

io

(2.53)

P

0

=

1

4I

0

Tr

n

MM

y

(�

(2)

�
^
n)

o

=

2Ref(a+m)


�

g

I

0

: (2.54)

Here we have again new spin observables, summarized in the polarization-transfer tensor

K

ij

, whi
h is de�ned as

I

0

K

ij

�

1

4

Tr

n

M(�

(1)

�

^

j)M

y

(�

(2)

�

^

i)

o

; (2.55)
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and the observables D

t

; R

t

; R

0

t

; A

t

; A

0

t

appearing in the polarization P

f

are

I

0

D

t

� I

0

K

nn

=

1

4

Tr

n

M(�

(1)

�
^
n)M

y

(�

(2)

�
^
n)

o

= 2(Refam

�

g+ j
j

2

+ jgj

2

� jhj

2

) (2.56)

I

0

R

t

� I

0

K

l

0

s

=

1

4

Tr

n

M(�

(1)

�
^
s)M

y

(�

(2)

�

^

l

0

)

o

= 2Ref(a+m)g

�

+ (a�m)h

�

g sin

�

2

+ 4Imf
g

�

g 
os

�

2

(2.57)

I

0

R

0

t

� I

0

K

s

0

s

=

1

4

Tr

n

M(�

(1)

�
^
s)M

y

(�

(2)

�
^
s

0

)

o

= 2Ref(a+m)g

�

� (a�m)h

�

g 
os

�

2

� 4Imf
g

�

g sin

�

2

(2.58)

I

0

A

t

� �I

0

K

l

0

l

= �

1

4

Tr

n

M(�

(1)

�

^

l)M

y

(�

(2)

�

^

l

0

)

o

= �2Ref(a +m)g

�

+ (a�m)h

�

g 
os

�

2

+ 4Imf
g

�

g sin

�

2

(2.59)

I

0

A

0

t

� �I

0

K

s

0

l

= �

1

4

Tr

n

M(�

(1)

�

^

l)M

y

(�

(2)

�
^
s

0

)

o

= 2Ref(a+m)g

�

� (a�m)h

�

g sin

�

2

+ 4Imf
g

�

g 
os

�

2

: (2.60)

Note the minus sign in the de�nitions for A

t

and A

0

t

. These are the de�nitions given in Cen-

ter for Nu
lear Studies Data Analysis Center (CNS DAC, http://gwda
.phys.gwu.edu/).

We take these de�nitions sin
e later we 
ompare with experimental data from this site. In

Ref. [23℄ the de�nitions for A

t

and A

0

t

have the opposite sign. In 
ase of identi
al parti
les

these expressions are the same as the ones given in Eqs. (2.48)-(2.52) if one repla
es � by

� � � (see for instan
e [23℄).

In experiment 6 the beam and target are unpolarized. In the �nal state the spins of

the two outgoing nu
leons are simultaneously measured

I

D

�

(1)

�

(2)

E

f

=

1

4

Tr

n

MM

y

�

(1)

�

(2)

o

= I

0

�

C

NN

^

N

^

N+ C

PP

^

P

^

P+ C

KK

^

K

^

K+ C

KP

(

^

P

^

K+

^

K

^

P)

�

: (2.61)

C

ij

is 
alled the spin 
orrelation parameter and is de�ned as

I

0

C

ij

�

1

4

Tr

n

MM

y

(�

(1)

�

^

i)(�

(2)

�

^

j)

o

: (2.62)

A

ordingly, C

NN

; C

PP

; C

KK

; C

KP

are

I

0

C

NN

=

1

4

Tr

n

MM

y

(�

(1)

�

^

N)(�

(2)

�

^

N)

o

= 2(Refam

�

g+ j
j

2

� jgj

2

+ jhj

2

) (2.63)

I

0

C

PP

=

1

4

Tr

n

MM

y

(�

(1)

�

^

P)(�

(2)

�

^

P)

o

= 2Ref(a�m)g

�

+ (a +m)h

�

g (2.64)

I

0

C

KK

=

1

4

Tr

n

MM

y

(�

(1)

�

^

K)(�

(2)

�

^

K)

o

= 2Ref(a�m)g

�

� (a +m)h

�

g (2.65)

I

0

C

KP

=

1

4

Tr

n

MM

y

(�

(1)

�

^

K)(�

(2)

�

^

P)

o

= �4Imf
h

�

g: (2.66)
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It 
an be shown that C

PK

= C

KP

.

In the last experiment both the beam and target are polarized and no spin measure-

ments are made in the �nal state. One measures the 
ross se
tion

I =

1

4

X

�;�

D

�

(1)

�

�

(2)

�

E

i

Tr

n

M�

(1)

�

�

(2)

�

M

y

o

= I

0

(1 + 2P

iy

A

y

+ P

ixx

A

xx

+ P

iyy

A

yy

+ P

izz

A

zz

� 2P

ixz

A

zx

) : (2.67)

The indi
es are for the s
attering frame given in Eq. (2.31). P

iy

=

D

�

(1)

y

E

i

=

D

�

(2)

y

E

i

and

P

ikl

=

D

�

(1)

k

�

(2)

l

E

i

are the polarization and tensor polarization in initial state, respe
tively.

A

y

is the already shown analyzing power. The other observables are the spin 
orrelation

parameters A

ij

's, whi
h are also 
alled tensor analyzing powers de�ned as

A

ij

�

1

4I

0

Tr

n

M(�

(1)

�

^

i)(�

(2)

�

^

j)M

y

o

: (2.68)

A

ordingly, A

xx

; A

yy

; A

zz

; A

zx

are

I

0

A

xx

� I

0

A

ss

=

1

4

Tr

n

M(�

(1)

�
^
s)(�

(2)

�
^
s)M

y

o

= 2Ref(a�m)g

�

� (a+m)h

�


os �g+ 4Imf
h

�

g sin � (2.69)

I

0

A

yy

� I

0

A

nn

=

1

4

Tr

n

M(�

(1)

�
^
n)(�

(2)

�
^
n)M

y

o

= 2(Refam

�

g+ j
j

2

� jgj

2

+ jhj

2

) = I

0

C

NN

(2.70)

I

0

A

zz

� I

0

A

ll

=

1

4

Tr

n

M(�

(1)

�

^

l)(�

(2)

�

^

l)M

y

o

= 2Ref(a�m)g

�

+ (a +m)h

�


os �g � 4Imf
h

�

g sin � (2.71)

I

0

A

zx

� �I

0

A

ls

= �

1

4

Tr

n

M(�

(1)

�

^

l)(�

(2)

�
^
s)M

y

o

= �2Ref(a +m)h

�

g sin � � 4Imf
h

�

g 
os � (2.72)

It 
an be shown that A

zx

= A

xz

. Again, note the minus sign in the de�nition for A

zx

,

whi
h is taken from CNS DAC. In Ref. [23℄ the de�nition for A

zx

has the opposite sign.



16 2 s
attering of Two Nu
leons



Chapter 3

THREE-DIMENSIONAL

FORMULATION FOR

NUCLEON-NUCLEON

SCATTERING

In the standard partial wave de
omposition for NN s
attering (see for instan
e Chapter 2

of Ref. [25℄) a set of the Lippmann-S
hwinger equations (LSE's) for the T-matrix is solved

for ea
h total angular momentum j of the two nu
leons and one 
al
ulates up to j

max

,

where the 
al
ulation 
onverges, whi
h means that the 
ontribution from j = j

max

+ 1 to

the value of the investigated observable is relatively small or negligible. If both isospins

exist (np s
attering) the set for ea
h j > 0 
onsists of six one-dimensional LSE's: two sets

of two 
oupled equations plus two un
oupled ones. For j = 0 there are only two un
oupled

LSE's. The largest number of LSE's is then 6j

max

+ 2, whi
h applies to np s
attering.

For example, with j

max

= 2 there are 14 LSE's in np s
attering. For pp s
attering the

number of LSE's is roughly half of that for a np system with the same j

max

. The higher

the energy involved in the pro
ess the larger j

max

and the more LSE's are to be solved.

For instan
e, at 300 MeV nu
leon laboratory energy one needs up to j

max

= 16 in order

to des
ribe the np di�erential 
ross se
tion suÆ
iently well [27℄.

In this 
hapter we formulate the te
hnique to treat NN s
attering without partial wave

de
omposition. The goal is to have a small set of the LSE's for the T-matrix, so that in


ontrast to the standard partial wave 
al
ulations just des
ribed one solves only a �xed

small number of the LSE's regardless of the energy involved in the pro
ess. We begin the

formulation with the de�nition of the basis state followed by dis
ussions on its properties

and end up with the set of the LSE's. In order to 
al
ulate NN s
attering observables, we

17
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onne
t the T-matrix obtained from this set of the LSE's to the "physi
al" T-matrix more

appropriate for 
al
ulating observables. This "physi
al" T-matrix is given as fun
tion of

relative momentum and individual spin (quantized in the z-axis) and isospin quantum

numbers of the two nu
leons. We also 
onne
t this formulation to the standard partial

wave representation.

We do not use a spin representation with a �xed quantization axis, for example the

z-axis. Instead, the total spin of the two nu
leons is given in its heli
ity representation,

where the quantization axis points in the dire
tion of their relative momentum. One

pra
ti
al advantage of working with heli
ity states is that these states are the eigen-

states of the heli
ity operator appearing in the NN potentials given in momentum spa
e.

NN potentials of one-boson-ex
hange type are 
onstru
ted dire
tly in terms of heli
ity

operators, but in this 
ase referring to the individual nu
leons [28, 29℄. Another advantage

of using heli
ities is related to a relativisti
 s
heme. Going to high energies one may en-


ounter relativisti
 e�e
ts. If the formulation is extended to a relativisti
 s
heme then

using the heli
ity representation is less 
ompli
ated than using the spin representation

with a �xed quantization axis [30℄.

3.1 Momentum-Heli
ity Basis States

For our purpose we de�ne basis states 
alled the momentum-heli
ity basis states - a name,

whi
h is simply taken from the 
omponents of whi
h they are 
onstru
ted. To represent

a system of two nu
leons the basis states must have some properties, i.e. they have to be

antisymmetri
 and have a de�nite parity. Here we present step by step the 
onstru
tion

of the basis states so that they have these properties. We follow with a dis
ussion on their

other properties.

We 
onsider the heli
ity representation of the total spin S = S

1

+ S

2

rather than

that of individual spins S

1

and S

2

of the two nu
leons. This has the advantages, that

instead of four we deal only with two spin states, i.e. the singlet (S = 0) and the triplet

(S = 1) states. Also, the total spin S is 
onserved (to a high degree of a

ura
y). Another

advantage is that if it is ne
essary to apply the formulation to systems of not spin-half

parti
les the modi�
ation is minor.

The total spin state j
^
zS�i of a two nu
leon system with quantization axis along the

z-axis, and � being the total-spin proje
tion on this axis, has the form

j
^
zS�i =

X

m

1

m

2

C

�

1

2

1

2

S;m

1

m

2

�

�

�

�

�

�

^
z

1

2

m

1

�

�

�

�

�

^
z

1

2

m

2

�

; (3.1)

where C

�

1

2

1

2

S;m

1

m

2

�

�

is the Clebs
h-Gordan 
oeÆ
ient,

�

�

�
^
z

1

2

m

i

E

(i = 1,2) is the spin
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state of the individual nu
leon quantized along the z-axis and m

i

being its spin proje
tion

on this axis. The heli
ity representation j
^
qS�i results from rotating the state j

^
zS�i into

the dire
tion of q, whi
h is the relative momentum of the two nu
leons

j
^
qS�i = R(

^
q) j

^
zS�i : (3.2)

Note that the spin proje
tion � on the quantization axis is un
hanged. Here R(
^
q) is the

rotation operator (see Refs. [31, 32℄ for detailed des
riptions of this operator)

R(
^
q) = R(��0) = e

�iS

z

�

e

�iS

y

�

; (3.3)

where S

z

; S

y

are the z- and y-
omponents of the total spin operator S, respe
tively, and

(�; �) determines the dire
tion of q. We would like to emphasize that di�erent from

Ref. [30℄, whi
h performs a rotation through three Euler angles (�; �; 
) = (�; �;��),

we perform a rotation through the angles (�; �; 
) = (�; �; 0), sin
e the third rotation

through the angle 
 = �� is unne
essary and therefore 
 is set to be zero.

As the state j
^
zS�i is the eigenstate of the z 
omponent S �

^
z of the spin operator, the

state j
^
qS�i is the eigenstate of the heli
ity operator S �

^
q

S �
^
q j

^
qS�i = � j

^
qS�i : (3.4)

This 
an be shown as follows using the relation S �
^
q = R(

^
q)S �

^
zR

�1

(
^
q):

S �
^
q j

^
qS�i = R(

^
q)S �

^
zR

�1

(
^
q)R(

^
q) j

^
zS�i

= R(
^
q)S �

^
z j

^
zS�i

= �R(
^
q) j

^
zS�i

= � j
^
qS�i : (3.5)

The orthogonality and the 
ompleteness relations for this state j
^
qS�i are similar to the

ones for the state j
^
zS�i:

h
^
qS

0

�

0

j
^
qS�i = Æ

S

0

S

Æ

�

0

�

(3.6)

X

S�

j
^
qS�i h

^
qS�j = 1; (3.7)

whi
h 
an be veri�ed as follows:

h
^
qS

0

�

0

j
^
qS�i = h

^
zS

0

�

0

jR

�1

(
^
q)R(

^
q) j

^
zS�i

= h
^
zS

0

�

0

j
^
zS�i

= Æ

S

0

S

Æ

�

0

�

; (3.8)
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h
^
qS

0

�

0

j
^
qS�i =

X

S

00

�

00

h
^
qS

0

�

0

j
^
qS

00

�

00

i h
^
qS

00

�

00

j
^
qS�i

=

X

S

00

�

00

Æ

S

0

S

00

Æ

�

0

�

00

Æ

S

00

S

Æ

�

00

�

= Æ

S

0

S

Æ

�

0

�

: (3.9)

We begin to 
onstru
t the momentum-heli
ity basis state, starting with a dire
t

produ
t of the momentum ve
tor state jqi and the heli
ity state j
^
qS�i

jq;
^
qS�i � jqi j

^
qS�i : (3.10)

This is justi�ed, sin
e we work in a nonrelativisti
 s
heme. In this s
heme the momentum

ve
tor state and the heli
ity state are independent of ea
h other, whereas in a relativisti


s
heme the two states are related (see for example Ref. [30℄).

This starting state jq;
^
qS�i has no de�nite parity. It is not eigenstate of the parity

operator P , whi
h a
ts on the momentum ve
tor state

P jq;
^
qS�i = j�q;

^
qS�i : (3.11)

We de�ne from this state a di�erent state jq;
^
qS�i

�

, whi
h is parity eigenstate as

jq;
^
qS�i

�

�

1

p

2

(1 + �

�

P ) jq;
^
qS�i : (3.12)

Here �

�

= �1 are the parity eigenvalues as 
an be 
he
ked by applying P on this state

P jq;
^
qS�i

�

=

1

p

2

(P + �

�

) jq;
^
qS�i

= �

�

1

p

2

(�

�

P + 1) jq;
^
qS�i

= �

�

jq;
^
qS�i

�

: (3.13)

The antisymmetri
 property is introdu
ed by taking into a

ount isospin and using

the permutation operator P

12

, whi
h ex
hanges the two nu
leons' labels, meaning that

the permutation takes pla
e in all spa
e: momentum, spin and isospin. In momentum

spa
e P

12

a
ts as P in Eq. (3.11) whereas in spin and isospin spa
e the a
tions of P

12

are

P

12

j
^
qS�i = (�)

1+S

j
^
qS�i (3.14)

P

12

jti = (�)

1+t

jti : (3.15)

Here jti � jtm

t

i is the total isospin state of the two nu
leons, where the total isospin t

equals 0 for singlet and 1 for triplet isospin states and m

t

is the isospin proje
tion along

its quantization axis, whi
h tells also the total ele
tri
 
harge of the system. We suppress
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m

t

for simpli
ity, sin
e ele
tri
 
harge is 
onserved. Now we de�ne the momentum-heli
ity

basis state jq;
^
qS�; ti

�a

as

jq;
^
qS�; ti

�a

�

1

p

2

(1� P

12

) jq;
^
qS�i

�

jti

=

1

p

2

�

1� �

�

(�)

S+t

�

jq;
^
qS�i

�

jti ; (3.16)

and the antisymmetri
ity of this state is obvious

P

12

jq;
^
qS�; ti

�a

=

1

p

2

(P

12

� 1) jq;
^
qS�i

�

jti

= � jq;
^
qS�; ti

�a

: (3.17)

The fa
tor in Eq. (3.16) tells that parity, spin and isospin must meet the 
ondition

�

�

(�)

S+t

= �1.

We evaluate now the normalization of the state given in Eq. (3.16). For this purpose

we need the relation between j
^
qS�i and j�

^
qS�i. This relation 
an be derived using

the de�nition in Eq. (3.2) for j�
^
qS�i and the Wigner D-fun
tion (see Refs. [31, 32℄ for

detailed des
ription of the Wigner D-fun
tion)

D

S

�

0

�

(
^
q) = D

S
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0

�

(��0) � h
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0

jR(
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j e

�iS

z

�

e

�iS

y

�

j
^
zS�i
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j e
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� e
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0

�

d

S

�

0

�

(�); (3.18)

together with the following relation for the d-matri
es d

S

�

0

�

(�) (see Appendix A for the

derivation)

d

S

�

0

�

(� � �) = (�)

S+�

0

d

S

�

0

��

(�): (3.19)

We obtain
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=
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S
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qS � �i : (3.20)
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Now the normalization of the states given in Eq. (3.16) 
an be worked out as follows:

�
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^
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; (3.21)

with
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Thus the normalization is
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Next we verify the 
ompleteness relation of the state de�ned in Eq. (3.16). Starting

with

X

S��t

Z

dqjq;
^
qS�; ti

�a

�

�a

hq;
^
qS�; tj = 1; (3.24)

with � being a fa
tor not yet de�ned and using the normalization given in Eq. (3.23) the


ompleteness relation is veri�ed as follows:
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In the last equality we used again Eq. (3.23) and thus determine � =

1

4

. Consequently

the 
ompleteness relation reads

X

S��t

Z

dqjq;
^
qS�; ti

�a

1

4

�a

hq;
^
qS�; tj = 1: (3.26)

3.2 General Stru
ture of the Potential Operator and

the Potential Matrix Element

As shown in Eq. (2.11) the NN potential is the input for the NN s
attering 
al
ulations.

Therefore, before we 
ontinue to �nd the set of the LSE's in the momentum-heli
ity basis

derived in the previous se
tion we �gure out �rst the general stru
ture of the potential

operator, whi
h �ts well to this momentum-heli
ity basis and investigate the potential

matrix element in this basis.

The NN potential is invariant under the operation of rotation, parity and time-reversal.

These invarian
e properties ex
lude many terms among all possible terms assumed as


omponents of a NN potential (see Ref. [25℄ for more edu
ative dis
ussions). There are

six terms left [26℄ in whi
h the most general stru
ture of a NN potential 
an be given, as

V (q

0

;q) � hq

0

jV jqi =

6

X

i=1

v

i

(q

0

; q; 
)W

i

: (3.27)

Here v

i

(q

0

; q; 
) are s
alar (spin independent) fun
tions, whi
h depend on the magnitudes

of q

0

, q, and the angle between the two, 
 �
^
q

0

�
^
q, and W

i

(i = 1 to 6) are operators to

the spin states of the two nu
leons su
h that

V

m

0

s1

m

0

s2

m

s1

m

s2

(q
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;q) � hq
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= hm
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0

jV jqijm

s1

m

s2

i

=

6

X

i=1

v
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(q

0

; q; 
)hm

0

s1

m

0

s2

jW

i

jm

s1

m

s2

i: (3.28)

The W

i

's are 
onstru
ted as 
ombinations of proje
ted-spin operators along some axes,
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given in terms of momentum 
ombinations with the ex
eption of W

1

, whi
h is unity:

W

1

= 1 W

2

= (�

1

+ �

2

) �

^
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= �
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^
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2

�

^
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1

�

^

K�

2

�

^

P

: (3.29)

Remember that these are the same operators appearing in the expression for the M-matrix

given in Eq. (2.32). (In that equation (2.32) and the whole Chapter 2 we atta
hed to the

Pauli matrix � the nu
leon labels 1,2 as supers
ript for 
larity.)

In terms of W

i

's a NN potential is expressed in the individual spin operators S

i

=

1

2

�

i

(i = 1,2) of the two nu
leons instead of in the total spin operator S =

1

2

(�

1

+ �

2

). The

latter one is more appropriate to the momentum-heli
ity basis state given in Eq. (3.16),

sin
e though algebrai
ally possible, it is not pra
ti
al to 
arry out matrix elements of the

potential given in Eq. (3.27) in the momentum-heli
ity basis. Therefore, it is ne
essary

to de�ne a set of six operators 
onstru
ted from the heli
ity operators S �
^
q of whi
h

the momentum-heli
ity basis state is eigenstate. Su
h operators have been de�ned in

Ref. [17℄. Here we 
onstru
t similar operators denoted by 


i

:
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= 1 


2

= S

2




3

= S �
^
q

0

S �
^
q

0
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= S �
^
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S �
^
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= (S �
^
q
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)
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(S �
^
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2




6

= S �
^
qS �

^
q

: (3.30)

In order to maintain the invarian
e properties of the potential the 


i

operators must be

linearly independent and have to be 
onne
ted to the W

i

's. The 
onne
tion of the 


i

to

the W

i

operators is given as

W

i

=

X

j

A

ij




j

; (3.31)

where the transformation matrix A = fA

ij

g depends on q, q

0

and 
 (see Appendix B).

Expressed in the 


i

operators the general form of a NN potential is

V (q

0

;q) =

6

X

i;j=1

v

i

(q

0

; q; 
)A

ij




j

: (3.32)

Taking also into a

ount the spin states of the two nu
leons, whi
h are now represented

as heli
ity states given in Eq. (3.2), and using Eq. (3.10) we have

V
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=
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h
^
q

0

S�

0

j


j

j
^
qS�i: (3.33)
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The matrix elements h
^
q

0

S�

0

j


j

j
^
qS�i are easier to evaluate, as it is intended by

de�ning the 


i

operators, . These are

h
^
q

0
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0

j


1

j
^
qS�i = h

^
q

0

S�

0

j
^
qS�i (3.34)
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qS�i (3.39)

All resulting expressions are simply the overlap of the heli
ity states de�ned in Eq. (3.2)

multiplied with a fa
tor, whi
h is just a number. Using Eq. (3.18) and that d

j

m

0

m

(�) being

a real number this overlap h
^
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j
^
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For q points in z-dire
tion d

S

M�

(0) = Æ

M�

and this overlap be
omes simple

h
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j
^
zS�i = e

i��

0

d

S

��

0
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0

): (3.41)

We evaluate now the matrix elements of the potential V in the momentum-heli
ity

basis �rstly without applying the general stru
ture of the potential given in Eq. (3.32).

We assume that parity, spin and thus isospin are 
onserved (whi
h is valid to a high degree

of a

ura
y) and restri
t ourselves to evaluate only
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Using Eq. (3.16) and the parity invarian
e of V we obtain for these matrix elements
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Similarly we 
ould also have gotten
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Using Eq. (3.43) together with Eqs. (3.20) and (3.44) we 
an 
onne
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In the same way we �nd
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Equations (3.46), (3.47) and (3.48) are denoted as the symmetry relations of the potential

matrix element in the momentum-heli
ity basis.

Inserting now the general stru
ture of the potential given in Eq. (3.32) into Eq. (3.43)

we obtain
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As an example, we work out in the following the 
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term of the potential matrix element
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In the derivation we used Eqs. (3.37), (3.20) and (3.40).

We would like to exhibit the angular behavior of the potential matrix elements given

in Eq. (3.49). The s
alar fun
tions v

i

(q

0

; q; 
) as well as A

ij

depend on 
, where
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� �): (3.51)

Therefore, their azimuthal dependen
e is determined by 
os(�

0

��). The matrix elements
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j
^
qS�i depend on the azimuthal angles �
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and � as shown in Eq. (3.40). Thus

the azimuthal dependen
e of the potential matrix elements 
an be des
ribed as
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For the spe
ial 
ase
^
q =

^
z the azimuthal dependen
e is only in the matrix elements

h
^
q

0

S�

0

j


j

j
^
qS�i as given in Eq. (3.41). Hen
e, the potential matrix elements redu
e to
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the simpler form
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3.3 Lippmann-S
hwinger Equation

In this se
tion we formulate the LSE for the T-matrix in momentum-heli
ity basis. Similar

to the potential matrix element given in Eq. (3.42) the T-matrix element in momentum-

heli
ity basis is de�ned as
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qS�; ti
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: (3.54)

It is obvious that the symmetry relations given in Eqs. (3.46)-(3.48) for the potential

matrix element as well as the expressions in Eqs. (3.43) and (3.45) apply also to the

T-matrix element given in Eq. (3.54), sin
e these equations result from the nature of the

momentum-heli
ity basis and the invarian
e properties of the NN potential, whi
h indeed

are also possessed by the T-matrix:
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Re
alling �rst the LSE given in Eq. (2.7), then using the 
ompleteness relation Eq. (3.26)

and the de�nitions in Eq. (3.54) for the T-matrix element and in Eq. (3.42) for the

potential matrix element, the LSE for the T-matrix element in momentum-heli
ity basis

takes the following form of an integral equation
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where E

q

and G

+

0

(E

q

) are given in Eq. (2.12). As mentioned there are two total-spin

states of the two nu
leons, i.e. singlet (S = 0) and triplet (S = 1) states. For the singlet


ase the LSE in Eq. (3.60) is one equation
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For the triplet 
ase there are 3 
oupled equations to ea
h initial heli
ity � = �1; 0; 1:
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(3.62)

This 
oupled set of equations in Eq. (3.62) 
an be redu
ed by means of the symmetry

properties of the potential and T-matrix elements.

Equations (3.47) and (3.57) 
hange the integral term with �

00

= �1 in Eq. (3.60) as
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Thus it 
an be 
ombined with the integral term with �

00

= 1. This leads to
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Hen
e, for the 
ase S = 1 one needs only two instead of three 
oupled equations for

�

0

= 1; 0 for ea
h �. In addition Eqs. (3.47) and (3.58) allow us to 
onsider only � = 1; 0.

At this point we would like to summarize that for ea
h isospin (singlet or triplet) the

set of the LSE's 
onsists of �ve equations, i.e. one un
oupled equation for S = 0 and two

sets (� = 1; 0) of two 
oupled equations (�

0

= 1; 0) for S = 1. In 
ontrast to the standard

partial wave te
hnique the number of the LSE's to be solved is �xed regardless the energy

involved in the pro
ess. There are 10 equations for np s
attering and 5 equations for pp

s
attering.

The LSE given in Eq. (3.64) is a set of three-dimensional integral equations. This

redu
ed LSE is still subje
t to further redu
tion, whi
h makes use of the azimuthal

behavior of the potential matrix elements emphasized in the end of the pre
eeding se
tion

(Eqs. (3.52) and (3.53)).

We begin by assuming that the azimuthal behavior of the potential matrix elements

Eqs. (3.52) and (3.53) are 
arried over to the T-matrix elements. This is reasonable as
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an be seen in the in�nite series of the LSE in V

T = V + V G

0

V + V G
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V G

0

V + ::: : (3.65)

The propagator G

0

has no angular dependen
e. Thus we make an ansatz for the solution

of the LSE given in Eq. (3.60) with
^
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We insert this into the right side of Eq. (3.60) together with Eqs. (3.52) and (3.53) to

obtain
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With respe
t to �

00

the integrand is periodi
al with the period being 2�. Thus we 
an set

�

0

= 0 just for the �

00

-integration and get
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This veri�es the 
orre
tness of the ansatz in Eq. (3.66).

Now we return to Eq. (3.67) and remove the fa
tor e

i��

0

on both sides of the equation.

This leads to
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where we restored the original notation V
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) for the potential matrix elements in

the integral kernel. This is a LSE for the two-dimensional T-matrix T
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). The

solution of this equation has no azimuthal dependen
e and hen
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-integration 
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be 
arried out independently. De�ning
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we 
an write the LSE for the two-dimensional T-matrix as
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Note that in evaluating the integral in Eq. (3.70) we again set �

0

= 0 as explained in the


ontext of Eq. (3.68). The driving term of this equation is a spe
ial 
ase of Eq. (3.70) for
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Inserting all these results into Eqs. (3.61) and (3.64) gives
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(3.73)

This is the �nal form of the set of the LSE's for NN s
attering in the momentum-heli
ity

basis.

3.4 Conne
tion to the Physi
al T-Matrix Repre-

sentation

In the pre
eding se
tion we have derived the set of the LSE's Eq. (3.73) for the

T-matrix. The T-matrix elements resulting from that equation are in the momentum-

heli
ity basis and therefore not dire
tly appropriate for 
al
ulating observables, whi
h are

then 
ompared to experimental data. We need the T-matrix elements with respe
t to the

states given as
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where �

1

; �

2

and m

1

; m

2

are the magneti
 isospin and spin quantum numbers, respe
tively.

The T-matrix elements in these states are then given as
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whi
h we refer to as the physi
al T-matrix elements. For example, the spin-averaged NN

di�erential 
ross se
tion is 
al
ulated as
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Thus a 
onne
tion between the physi
al T-matrix elements and the T-matrix elements in

the momentum-heli
ity basis is required, espe
ially the one with
^
q =

^
z.

The physi
al T-matrix elements given in Eq. (3.75) have to be expressed in terms of
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;q) by inserting into that equation the 
ompleteness relation given in Eq. (3.26)

twi
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ity basis state with the state
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With the overlap h
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Eq. (3.77) 
an be evaluated to give
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Note that if ne
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We have used the T-matrix properties given in Eqs. (3.57) - (3.59) and the relation for

the d-matri
es given in Eq. (3.19) to arrive to this result.
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where in addition we have set q

0

= q, sin
e observables are measured on-shell.

3.5 Conne
tion to the Standard Partial Wave Re-

presentation

After developing a new te
hnique to treat NN s
attering it is natural to test and to


ompare it to the well established, standard partial wave de
omposition. Though we 
an


ompare our 
al
ulations dire
tly to experimental data, it is also interesting to have a


omparison on this level. Besides there are not always experimental data available to
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ompare with. Therefore, we make a 
onne
tion to the standard partial wave repre-

sentation. For simpli
ity we set q

0

= q from the beginning.

The well known on-shell partial wave proje
ted T-matrix element is de�ned as
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angular momentum (J = L + S). For simpli
ity we have suppressed the isospin proje
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The states ful�ll the 
ompleteness relation
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Now we derive the expression for the on-shell T-matrix T
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(see Appendix A for the derivation of Eq. (3.92)) and an addition theorem for D-fun
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it is straightforward to show that
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where in the last step we have applied
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and Eq. (3.92). Thus
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Finally, using Eq. (3.66) we obtain the expression for T
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Now we perform a test to this expression. We insert this equation into the physi
al

T-matrix elements Eq. (3.82) with the aim to get the partial wave representation for the

physi
al T-matrix elements.
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In the last two steps of Eq. (3.98) we have used the relation
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and an orthonormality relation of D-fun
tions
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Using Eq. (3.91) we end up with the standard form of the physi
al T-matrix elements in

the partial wave representation
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This veri�es the expression given in Eq. (3.97).

We work out the reversal expression of Eq. (3.97), whi
h is a

omplished in the

following way: we perform on the left side of Eq. (3.97) some algebra the e�e
ts of whi
h

remove all fa
tors and terms on the right side but the partial wave proje
ted T-matrix
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Applying this relation to Eq. (3.97) 
an
els the summation over j and removes the

d-matri
es
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Next we eliminate the Clebs
h-Gordan 
oeÆ
ients and at the same time 
an
el the double

summations over l and l
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by means of the orthogonality relation
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together with another relation for the Clebs
h-Gordan 
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as 
an be veri�ed in the following algebra
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�
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p
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�
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�
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0
�

l

(q): (3.107)

Repla
ing j

0

,

�

l and

�

l

0

with j, l and l

0

respe
tively for better notations this gives the �nal

expression

T

Sjt

l

0

l

(q) =

�

2

p

2l

0

+ 1

p

2l + 1

2j + 1

�

X

�

0

�

C(l

0

Sj; 0�

0

)C(lSj; 0�)

Z

1

�1

d 
os �

0

d

j

��

0

(�

0

)T

�St

�

0

�

(q; q; �

0

): (3.108)
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We took into a

ount that parity, total spin and isospin are 
onstrained by �

�

(�)

S+t

= �1

and the orbital angular momenta l and l

0

by �

�

(�)

l

0

= �

�

(�)

l

= 1.

On
e the partial wave proje
ted T-matrix elements are 
al
ulated, we 
an 
onne
t

them to the partial wave proje
ted S-matrix elements using the relation given in Eq. (3.99).

The partial wave proje
ted S-matrix elements are parameterized by the standard partial

wave phase shifts [33, 34℄. Thus we 
an 
al
ulate phase shifts and 
ompare them with

those resulting from the standard partial wave 
al
ulations.
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leon-Nu
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attering



Chapter 4

APPLICATION TO NN

SCATTERING

In the last 
hapter we formulated a three-dimensional (3D) approa
h to 
al
ulate NN

s
attering without employing partial wave (PW) de
omposition. The pra
ti
al appli
ation

of this formulation in
ludes solving the set of LSE's given in Eq. (3.73) for the T-matrix

elements T

�St

�

0

�

(q

0

; q; �

0

). Then we 
al
ulate observables, whi
h we 
ompare to experimental

data. To 
he
k the new 3D formulation for 
orre
tness, it is also important to perform a


omparison with the standard PW 
al
ulations. Here we show results of our 
al
ulations

and refer to Appendix E for the numeri
al realization.

For this appli
ation we �rst need to 
hoose NN potential models. These provide the

input to the LSE's given in Eq. (3.73), when expressed in the appropriate form. Before

showing results of our 
al
ulations, we present our 
hoi
e of NN potentials and show the

transformation from the original expressions to the ones indi
ated by Eq. (3.32). The

�nal expressions 
an be found in Appendi
es C and D.

4.1 The NN Potentials

Any NN potential given in operator form 
an be used for the 3D te
hnique formu-

lated in Chapter 3. We 
hoose two modern realisti
 NN potentials, ea
h representing a

distin
t 
ategory, namely the one-boson-ex
hange potential (OBEP) derived from a meson

theoreti
al approa
h and a phenomenologi
al potential based on the quantum me
hani
al

symmetries of the NN system and the pion ex
hange. These types of NN potentials are

well developed and have been used in few-body nu
lear physi
s for several de
ades, in the

sense that these models give very good quantitative results.

43
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4.1.1 One-Boson-Ex
hange Potential

Conventionally an OBEP is worked out in the framework of quantum �eld theory, de-

rived from the Bethe-Salpeter equation, and approximated to a purely spatial form by

means of, e.q., the Blankenbe
ler-Sugar redu
tion (see Ref. [35, 21℄). These potentials


an be tra
ed ba
k to Yukawa's suggestion [36℄ in 1935 that two nu
leons intera
t by ex-


hanging a mediating parti
le 
alled meson, and supported by the dis
overies of � meson

(pion) and other heavier mesons. The OBEP's are based on meson-ex
hanges of pseu-

dos
alar, s
alar and ve
tor types, 
ontributing to di�erent parts of the nu
lear for
e. For

example, the pseudos
alar mesons 
ontribute to the tensor for
e. In addition, as

suggested by Taketani, Nakamura and Sasaki [37℄ the nu
lear for
e is divided into three

parts 
orresponding to the long, attra
tive intermediate and repulsive short range inter-

a
tions. Hen
e mesons of di�erent masses are in
luded, sin
e the range of the for
e 
an

be related to the meson mass. For this purpose, �
titious mesons of mass between 400

- 800 MeV su
h as � in Ref.[35℄ and � in Ref.[38℄ may be employed to represent the

intermediate range attra
tion. Multiple-meson ex
hanges between two nu
leons are also

taken into a

ount [6, 35℄. Fortunately, for pra
ti
al purposes the one-boson-ex
hange is

a qualitatively and quantitatively approximation for the NN for
e. The parameters of an

OBEP are the meson-nu
leon 
oupling 
onstants and the 
uto�s, o

uring in strong form

fa
tors, representing the �nite size of the nu
leon. The 
oupling 
onstants are usually

extra
ted from meson de
ay (see Ref. [39℄ and http://pdg.lbl.gov/) and the 
uto�s are

�xed to the NN data. In 
ase of the �
titious mesons the masses are also adjusted. A

review on the OBEP's is given in Ref. [21℄.

Among the best OBEP's are the Nijmegen I and II [38℄ and the CD-Bonn [40℄ po-

tentials, whi
h are 
harge-dependent and thus distinguish between pp, nn and np inter-

a
tions. These potentials are �tted to np as well as pp data below 350 MeV laboratory

energy with �

2

=datum � 1. This energy is already above the pion produ
tion threshold

(� 286 MeV laboratory energy). To a
hieve this 
lose-to-unity �

2

=datum the parame-

terization is made for ea
h partial wave. Hen
e, despite their sophis
ations these potentials


annot be used in the 3D te
hnique.

We 
hoose an OBEP given as tree-level Feynman diagrams and thus a simultane-

ous parameterization of all partial waves, the Bonn OBEP [35℄ in the parameterizing of

Bonn-B [21℄. This potential is well �tted to np data for both 2N total isospin singlet and

triplet up to about 325 MeV laboratory energy, in whi
h only the �-meson mass is di�erent

for ea
h isospin. Being �tted only to np data the potential assumes a 
harge-independent

NN intera
tion.
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The Bonn OBEP has the form

V (q

0

;q) = V

ps

(q

0

;q) + V

s

(q

0

;q) + V

v

(q

0

;q); (4.1)

where the labels ps; s; v stand for pseudos
alar, s
alar and ve
tor, respe
tively, 
orres-

ponding to the type of the ex
hanged mesons. These pseudos
alar, s
alar and ve
tor

potentials operators are given as

V

ps

(q

0

;q) =

g

2
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r
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E
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Here m stands for the nu
leon mass and m

�

(� = ps; s; v) for the 
orresponding meson

masses. In the ve
tor potential one has 4-momenta (p

1

+ p

0

1

)

�

= (E + E

0

;q + q

0

) and

(p

2

+ p

0

2

)

�

= (E + E

0

;�q� q

0

). The form fa
tor F

2

�

[(q

0

� q)

2

℄ takes the form:

F

2

�

[(q

0

� q)

2

℄ =

 

�

2

�

�m

2

�

�

2

�

+ (q

0

� q)

2

!

2n

; (4.5)

with the power 
onstant n being 1 for the pseudos
alar and s
alar potentials and 2 for the

ve
tor potential. The mesons' masses m

�

, the 
oupling 
onstants g

�

, f

v

and the 
uto�s

�

�

are given in Table 4.1, taken from [21℄.

This OBEP has to be expressed in a form of Eq. (3.32), that is in terms of the




i

operators given in Eq. (3.30). This is done as follows. The OBEP's operators are


ombinations of �

1

�
^
q, �

2

�
^
q, �

1

�
^
q

0

and �

2

�
^
q

0


ontained in the Dira
 spinors. These

operators 
an be expressed in terms of the W

i

operators given in Eq. (3.29). It turned

out that it is easier to express �rst the W

i

operators in terms �

1

�
^
q, �

2

�
^
q, �

1

�
^
q

0

and

�

2

�
^
q

0

. One 
an invert the resulting expressions and apply them to the OBEP. Next by
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Table 4.1: Parameters for the Bonn-B potential. The shown � parameters are for NN

total isospin 0. For NN total isospin 1 the parameters are m

�

= 720 MeV,

g

2

�

4�

= 18:3773,

�

�

= 2 GeV and n = 1.

meson m

�

[MeV℄

g

2

�

4�

f

�

g

�

�

�

[GeV℄ n

� 138.03 14.4 1.7 1

� 548.8 3 1.5 1

Æ 983 2.488 2 1

� 550 8.9437 1.9 1

� 769 0.9 6.1 1.85 2

! 782.6 24.5 0 1.85 2

means of Eq. (3.31), whi
h relates the W

i

operators with 


i

operators, the expression

of the OBEP in terms of the 


i

operators will result. For all this purpose one 
an use

symboli
 manipulation pa
kages su
h as Mathemati
a. In Appendix C the potential �nal

expressions in terms of the W

i

as well as 


i

operators are presented.

4.1.2 Phenomenologi
al Potential

The development of the phenomenologi
al NN potentials started in the 1950's to provide

a simple des
ription of the nu
lear for
e, whi
h then may serve as an input for nu
lear 
al-


ulations [21℄. The phenomenologi
al potentials are 
onstru
ted in terms of operators as


ombinations of spin, isospin and orbital angular momentum operators (in 
on�guration

spa
e) representing pro
esses o

uring (or assumed to o

ur) in the NN intera
tion. For

a �xed isospin state a phenomenologi
al potential is a sum of six independent opera-

tor terms, governed by translational, Galilean, rotational, spa
e re
e
tion, time reversal

invarian
es, symmetry 
ondition and hermiti
ity [41℄. The s
alar fun
tions multiplying

with the operators are di�erent from one potential to another. The appearan
es of the

operators may also be slightly di�erent as shown, for example, in Ref. [38℄ for Nijmegen

Group's potentials and Refs.[9, 20℄ for the Argonne potentials. However, these sets of

operators are related one to another, as demonstrated for instan
e by the two sets of

operators W

i

and 


i

, given in Eqs. (3.27) and (3.32). Phenomenologi
al potentials also


ontains the one-pion-ex
hange (OPE) potential as long range part, sin
e the OPE is a

well established 
on
ept for the nu
lear for
e. The phenomenologi
al potentials use a

larger number of parameters to be �tted to data, 
ompared to the meson theoreti
al ones.

The 
harge dependent potentials Reid93 [38℄ and Argonne 18 (AV18) [20℄ belong to
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the best �tted phenomenologi
al potentials [42℄. Both are �tted to pp as well as np data

below 350 MeV laboratory energy and showing �

2

=datum � 1. In addition the AV18

potential is �tted also to low-energy nn s
attering parameters and deuteron properties.

The Reid93 potential is parameterized for ea
h partial wave, whereas the parameterization

of the AV18 is given for all partial waves. Hen
e, we 
hoose the AV18 potential for our


al
ulations.

The AV18 potential is given originally in 
on�guration spa
e and has the general form

V (r) = V

EM

(r) + V

�

(r) + V

R

(r); (4.6)

where r is the relative position between the two nu
leons. The potential V

EM

(r)

represents an ele
tromagneti
 part, whi
h is ex
luded in this work. The 
harge dependent

potentials V

�

(r) and V

R

(r) represent the OPE part and the intermediate- and short-range

phenomenologi
al part, respe
tively. The OPE part has standard spin-spin and tensor

operator terms

V

�

(r) = V

�

ss

(r)�

1

� �

2

+ V

�

t

(r)S

12

; (4.7)

where S

12

denotes the tensor operator and the radial fun
tions V

�

ss

(r) and V

�

t

(r) 
ontain

exponential 
uto�s. The V

R

(r) part is expressed as a sum of 
entral, tensor, spin-orbit,

L

2

, and quadrati
 spin-orbit terms abbreviated as 
; t; ls; l2; ls2, respe
tively, in di�erent

spin and iso-spin (St) states:

V

R

St

(r) = V




St

(r)1+ V

t
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(r)S

12

+ V

ls
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+ V

ls2
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(r)(L � S)

2

: (4.8)

The 
oupling 
onstant used in V

�

(r), the radial fun
tions and the 40 non-zero parameters

used in V

R

(r) are given in Ref. [20℄.

For applying this potential in our 
al
ulations, we need to have V

�

(q

0

;q) and V

R

(q

0

;q)

given as

V

�

(q
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;q) = V
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�
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;q) (4.9)
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whi
h are the Fourier transform of V

�

(r) and V

R

(r), respe
tively. We obtain expli
itly
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V
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where � � jq

0

� qj. The resulting operators 
an be easily represented in terms of the W

i

operators and next by means of Eq. (3.31) in the 


i

operators. The expressions in these

two operators W

i

and 


i

are given in Appendix D.

4.2 Results and Dis
ussions

In this se
tion we present the results of our 
al
ulations for phase shifts, T-matrix elements

and observables.

In Subse
tion 4.2.1 we show some NN phase shifts resulting from our 3D 
al
ulations

(Æ

3D

) and those from the standard PW 
al
ulations (Æ

PW

). The Æ

3D

are obtained from

Eq. (3.99) together with Eq. (3.108). Equation (3.99) relates between PW proje
ted

S-matrix and T-matrix and Eq. (3.108) 
onne
ts PW proje
ted T-matrix with T-matrix

in the momentum-heli
ity basis.

In Subse
tion 4.2.2 we present the 2D half-on-the-energy-shell (half-shell) behavior of

the T-matrix elements T

�St

�

0

�

(q

0

; q; �

0

) in the momentum heli
ity basis. Two-dimensional

behavior means the angular and momentum dependen
e. We 
ompare this behavior of

T

�St

�

0

�

(q

0

; q; �

0

) resulting from the two 
hosen NN potential models Bonn-B and AV18, whi
h

di�er from ea
h other in their nature. The 2D on-the-energy-shell (on-shell) behavior of

the T-matrix elements

a

h�

1

�

2

m

0

1

m

0

2

q

0

jT j�

1

�

2

m

1

m

2

qi

a

in the physi
al representation is also

shown for a large range of energies up to 1 GeV laboratory energy.

Subse
tion 4.2.3 serves like Subse
tion 4.2.1 as a test. First we show 
omparisons

with the standard PW 
al
ulations, in whi
h Æ

3D

are used. Next we show 
omparisons

with data at higher energy beyond the �-threshold for NN system as well as beyond the

highest energy, where the two NN potentials Bonn-B and AV18 are �tted. We present

our 
al
ulations together with the partial-wave analyses (PWA) taken from the CNS DAC

(http://gwda
.phys.gwu.edu/), whi
h is also the sour
e of the experimental data.
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4.2.1 Phase Shifts

Here we 
ompare the NN Æ

3D

with the NN Æ

PW

for proje
tile energies 100 and 300 MeV.

For the Bonn-B potential the phase shifts are given in Table 4.2. The agreement between

the two 
al
ulations, both performed in momentum spa
e, is ex
ellent. For the AV18

potential we give the phase shifts in Table 4.3. In this 
ase the PW 
al
ulation is performed

in 
oordinate spa
e [43℄. The agreement is also very good, though not as ex
ellent as in

the 
ase of Bonn-B. The sour
e of this slight dis
repan
y is presumably twofold. First,

the dis
repan
y may have been 
aused by imperfe
tions in the numeri
al realization of the

Fourier-Bessel transformations of the AV18's 
omponent fun
tions given in Eqs. (4.11)-

(4.17). Se
ond, there probably o

ur ina

ura
ies in the solution of the LSE's of Eq. (3.73),

des
ribed in the following. See also Appendix E Se
tion E.1 for des
riptions and values.

Solving the integral equation in Eq. (3.73) requires an evaluation of the potential

fun
tions on a grid of size n

�

00

� (n

q

00

� n

�

00

)

2

, where n

�

00

; n

q

00

; n

�

00

are the numbers of

�

00

-, q

00

-, �

00

-integration points. For e
onomi
al reasons we prepare the potential fun
tions

on
e on a �ne grid for � = jq

00

� q

0

j and obtain the value at points a
tually needed in the


al
ulation via interpolation. The grid is prepared within a range of 0 � � � 300 fm

�1

,

with the resolution being 0.2 fm

�1

for 0 � � � 10 fm

�1

, 0.5 fm

�1

for 10 � � � 50 fm

�1

and 2.5 fm

�1

for 50 � � � 300 fm

�1

. Using values for the numbers of integration points

given in Se
tion E.1 the resolution of a
tual grid for � is roughly 0.1

�4

fm

�1

, obtained

from 2q

3

=(n

�

00

� (n

q

00

� n

�

00

)

2

), where q

3

= 150 fm

�1

is the upper limit in q

00

-integration

for the AV18 potential. This resolution is mu
h smaller than the one of the grid for

interpolation. Thus, this pro
edure may leads to larger numeri
al errors 
ompared to a

dire
t evaluation of the algebrai
 expressions in the 
ase for Bonn-B. The di�eren
es 
an

be 
learly seen when 
omparing Tables 4.2 with 4.3. Note that in both 
ases a 
omparable

grid for the T-matrix elements is used. For the interpolation one 
an pra
ti
ally use any

reliable method. We use the modi�ed 
ubi
 hermite splines [44℄, whi
h is a

urate yet

pra
ti
al.

4.2.2 T-Matrix

Now we show the 2D behavior of the half-shell T-matrix elements T

�St

�

0

�

(q; q

0

; �) as the

solution of Eq. (3.73). Here q; � denote the outgoing momenta in the x-z-plane and q

0

denotes the magnitude of the in
oming momentum in the z dire
tion. These are displayed

in Figs. 4.1-4.7, all for 300 MeV laboratory energy, 
orresponding to q

0

= 375 MeV/
. In

the �gures T

�St

�

0

�

(q; q

0

; �) are denoted by T for S = 0 and by T

�

0

�

for S = 1, where �

0

and

� take values of 0, 1. Due to the symmetry of the potential, and hen
e the T-matrix,
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Table 4.2: Comparison of the NN phase shifts obtained from our 3D formulation (Æ

3D

)

with those from the standard PW 
al
ulations in momentum spa
e (Æ

PW

) for the Bonn-B

potential at 100 and 300 MeV laboratory energies.

E

lab

= 100 MeV E

lab

= 300 MeV

2S+1

L

J

Æ

3D

Æ

PW

Æ

3D

Æ

PW

1

S

0

25.1928 25.1929 -8.1755 -8.1756

3

P

0

9.8046 9.8046 -11.4799 -11.4799

1

P

1

-16.3131 -16.3451 -28.6946 -28.8747

3

P

1

-13.4677 -13.4677 -26.3800 -26.3800

3

S

1

41.9858 41.9870 4.0667 4.0676

3

D

1

-12.9847 -12.9846 -23.7182 -23.7181

"

1

-2.2360 -2.2357 -4.0268 -4.0265

1

D

2

3.3411 3.3411 7.4888 7.4888

3

D

2

17.6710 17.6710 25.3616 25.3617

3

P

2

11.7356 11.7356 17.3981 17.3981

3

F

2

0.7705 0.7705 0.5236 0.5238

"

2

2.8402 2.8402 2.0166 2.0166

1

F

3

-2.4397 -2.4397 -5.5865 -5.5865

3

F

3

-1.6484 -1.6484 -4.0097 -4.0097

3

D

3

0.4203 0.4855 2.5719 2.5720

3

G

3

-1.0105 -1.0105 -4.4051 -4.4051

"

3

-3.6604 -3.6604 -7.2233 -7.2233

1

G

4

0.4092 0.4092 1.3556 1.3556

3

G

4

2.2624 2.2624 7.3000 7.3000

3

F

4

0.4203 0.4203 2.4491 2.4491

3

H

4

0.1082 0.1082 0.5077 0.5077

"

4

0.5575 0.5575 1.5509 1.5509
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Table 4.3: Comparison of the NN phase shifts obtained from our 3D formulation (Æ

3D

)

with those from the standard PW 
al
ulations in 
on�guration spa
e (Æ

PW

) [43℄ for the

AV18 potential at 100 and 300 MeV laboratory energies.

E

lab

= 100 MeV E

lab

= 300 MeV

2S+1

L

J

Æ

3D

Æ

PW

Æ

3D

Æ

PW

1

S

0

25.99 25.94 -4.62 -4.60

3

P

0

8.69 8.69 -11.05 -11.06

1

P

1

-14.19 -14.20 -26.18 -26.28

3

P

1

-13.06 -13.07 -28.38 -28.49

3

S

1

43.69 43.56 8.15 8.16

3

D

1

-12.08 -12.09 -24.80 -24.90

"

1

-2.49 -2.49 -4.38 -4.39

1

D

2

3.81 3.81 9.45 9.44

3

D

2

17.14 17.10 25.11 25.02

3

P

2

11.02 11.00 16.96 16.91

3

F

2

0.67 0.67 0.77 0.76

"

2

2.70 2.70 2.21 2.21

1

F

3

-2.23 -2.23 -4.87 -4.88

3

F

3

-1.35 -1.35 -2.51 -2.51

3

D

3

1.61 1.61 5.22 5.21

3

G

3

-0.93 -0.93 -4.19 -4.20

"

3

-3.50 -3.50 -7.17 -7.16

1

G

4

0.40 0.40 1.42 1.42

3

G

4

2.22 2.22 7.35 7.34

3

F

4

0.45 0.45 2.75 2.74

3

H

4

0.07 0.07 0.31 0.31

"

4

0.51 0.51 1.54 1.54
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it is suÆ
ient to 
onsider only these two values of heli
ity. The notations Re and Im

have their usual meaning as indi
ating real and imaginary parts. Figures 4.1-4.5 show the

Bonn-B potential and Figs. 4.6-4.7 the AV18 potential 
ases.

Figure 4.1 shows T

�St

�

0

�

(q; q

0

; �) for S = 0. On the left side we see the parity-even and

on the right side the parity-odd 
ase, whi
h are distinguished by the symmetri
 and the

antisymmetri
 angular behavior of the T-matrix elements. The T-matrix elements peak

sharply at q = q

0

in forward and ba
kward s
attering dire
tions, show strong 2D behavior

around q = q

0

and a very weak momentum dependen
e for momenta far away from q

0

.

The T-matrix elements for parity-even 
ase exhibit a similar behavior as the symmetrized

T-matrix elements of the two-boson 
ase studied in Ref. [13℄.

Figures 4.2-4.5 display T

�St

�

0

�

(q; q

0

; �) for S = 1. Coming as two pairs, ea
h showing

�rst the real part and then the imaginary part of the T-matrix elements, the �rst pair

(Figs. 4.2 and 4.3) show the parity-even 
ase and the se
ond pair (Figs. 4.4 and 4.5)

the parity-odd 
ase. We see various strong angular and momentum dependen
e of the

T-matrix elements for momenta around q

0

and a very weak one for momenta away from

q

0

.

Next we take a look at Figs. 4.6 and 4.7, displaying a few examples of T

�St

�

0

�

(q; q

0

; �) as

obtained from the AV18 potential. Thus, we will see how strong the di�eren
e is between

the half-shell T-matrix elements obtained from the two potentials Bonn-B and AV18. In

Fig. 4.6 the real and imaginary parts of T

�St

�

0

�

(q; q

0

; �) for S = 0 are shown, where the left

side is for parity-even and the right side is for parity-odd 
ase. Compared with Fig. 4.1

along the on-shell line (q = q

0

) the 
orresponding T-matrix elements obtained from the

two potentials are identi
al. However, the detailed stru
tures are di�erent, espe
ially the

parity-odd T-matrix elements. One sees that at large momenta q the Bonn-B T-matrix

elements show a stronger angular behavior than the AV18 ones. For the 
ase S = 1

we present only some T-matrix elements, representing the ones whi
h look similar to and

those quite di�erent from the 
orresponding Bonn-B T-matrix elements. The upper part of

Fig. 4.7 shows two AV18 T-matrix elements 
onsiderably di�erent from the 
orresponding

Bonn-B ones displayed in the upper part of Fig. 4.5. The lower part of Fig. 4.7 shows

the ones relatively similar, the �gure in the lower left should be 
ompared to that in the

lower left of Fig. 4.2 and the �gure in the lower right to that in the lower right of Fig. 4.3.

We turn now to the on-shell physi
al T-matrix elements

a

h�

1

�

2

m

0

1

m

0

2

q

0

^
qjT j�

1

�

2

m

1

m

2

q

0

i

a

, simpli�ed in notation as hm

0

1

m

0

2

jT jm

1

m

2

i, where

m

i

; m

0

i

= � (i = 1; 2) represent the two spin-half states. We are interested in the on-

shell T-matrix elements, sin
e these are 
losely related to observables. Equation (3.76)

shows one example of the observables, the spin averaged di�erential 
ross se
tion. In the
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Figure 4.1: T

�St

�

0

�

(q; q

0

; �) for S = 0 as fun
tion of q and 
os � in units 10

�7

MeV

�2

,


al
ulated using the Bonn-B potential for q

0

= 375 MeV/
, 
orresponding to E

lab

= 300

MeV. The left side displays the parity-even and the right side the parity-odd 
ase.
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Figure 4.2: The real part of the parity-even T

�St

�

0

�

(q; q

0

; �) for S = 1 as a fun
tion of q and


os � in units 10

�7

MeV

�2

, 
al
ulated using the Bonn-B potential for q

0

=375 MeV/
.
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Figure 4.3: Same as Fig. 4.2, but for the imaginary part.
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Figure 4.4: The real part of the parity-odd T

�St

�

0

�

(q; q

0

; �) for S = 1 as a fun
tion of q and


os � in units 10

�7

MeV

�2

, 
al
ulated using the Bonn-B potential for q

0

=375 MeV/
.
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Figure 4.5: Same as Fig. 4.4, but for the imaginary part.
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Figure 4.6: T

�St

�

0

�

(q; q

0

; �) for S = 0 as a fun
tion of q and 
os � in units 10

�7

MeV

�2

,


al
ulated using the AV18 potential for q

0

= 375 MeV/
. The left side displays the

parity-even and the right side the parity-odd 
ase.
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Figure 4.7: Sele
ted T

�St

�

0

�

(q; q

0

; �) for S = 1 as a fun
tion of q and 
os � in units 10

�7

MeV

�2

, 
al
ulated from the AV18 potential for q

0

=375 MeV/
.
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following we will use the term amplitudes for the on-shell T-matrix elements.

Considering rotational and parity invarian
e, one ends up with six independent am-

plitudes,

h+ + jT j+ +i = h� � jT j � �i

h+ + jT j � �i = h� � jT j+ +i

h+� jT j+ +i = h� + jT j+ +i = �h+� jT j � �i = �h� + jT j � �i

h+ + jT j+�i = h+ + jT j � +i = �h� � jT j+�i = �h� � jT j �+i

h+� jT j+�i = h� + jT j � +i

h�+ jT j+�i = h+� jT j � +i: (4.18)

Therefore, instead of 
al
ulating 16 amplitudes for all possible m

i

; m

0

i

(i = 1; 2) 
ombi-

nations one needs only to 
al
ulate these six amplitudes. In Figs. 4.8-4.10 we display

the squared absolute values of these six amplitudes for the np system as a fun
tion of

the laboratory energy and the 
.m. s
attering angle 
os �, 
al
ulated from the Bonn-B

potential. We show the amplitudes up to 1 GeV, whi
h is mu
h beyond the energy range,

where the Bonn-B as well as the AV18 potentials de�ned, namely below the �-threshold.

At this point we only want to demonstrate that our 
al
ulation at higher energies takes

the same e�ort as the one at very low energies. The reason is of 
ourse that we do not

work with partial waves. We would like to remark that, as indi
ated in Eq. (3.102), these

on-shell amplitudes 
an also be 
al
ulated from the PW proje
ted S-matrix and T-matrix

elements. For a numeri
al test of our formulation we used this relation.

4.2.3 Observables

In this subse
tion we 
ompare NN s
attering observables obtained from our 3D 
al
u-

lations with experimental data. However, at �rst we 
ompare with results from standard

PW 
al
ulations.

By de�nition a 3D 
al
ulation 
ontains 
ontributions from all partial waves. Thus,


omparing with PW 
al
ulations, where in
reasing maximum total angular momentum

j

max

are taken into a

ount, is instru
tive. Here we 
an observe how with in
reasing j

max

the PW 
al
ulations 
onverge towards the 
omplete sum of all partial waves. We show

the spin averaged di�erential 
ross se
tion (shortly 
alled the 
ross se
tion) and two spin

observables A

y

and D

t

for the np system.

Figures 4.11-4.13 display the above given observables forE

lab

= 100 MeV and Figs.4.14-

4.16 display them for E

lab

= 300 MeV. All �gures show 
al
ulations based on the AV18

potential. At E

lab

= 100 MeV j

max

= 10 gives a 
ompletely 
onverged result for the 
ross
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Figure 4.8: The squared absolute value of the on-shell physi
al T-matrix elements denoted

by jhm

0

1

m

0

2

jT jm

1

m

2

ij

2

(see text) in units 10

�14

MeV

�4

as a fun
tion of E

lab

and 
os �.
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Figure 4.9: Same as Fig. 4.8, but for di�erent m

i

; m

0

i

(i = 1; 2) 
ombinations.
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Figure 4.10: Same as Fig. 4.8, but for di�erent m

i

; m

0

i

(i = 1; 2) 
ombinations.
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se
tion and D

t

. For A

y

j

max

= 8 is enough. At E

lab

= 300 MeV more partial waves

are needed. The 
ross se
tion and D

t

require j

max

= 16 for a 
onverged result, while A

y

needs only j

max

= 12. For the 
ross se
tion, the high values of j

max

are required to rea
h


onvergen
e at forward and ba
kward dire
tions. These 
omparisons give us a view of

how many LSE's are to be solved in the PW 
al
ulations. One 
hara
teristi
 of a PW


al
ulation is also shown in these 
omparisons, that is its os
illatory behavior. This is

observed most obviously in Fig.4.16. A PW 
al
ulation of higher order os
illates more

rapidly than that of lower order. This behavior reminds us of the Legendre polynomial

o

uring in the PW expansion of a plane wave.

Next we 
ompare with experimental data. We 
hoose some energies beyond the

�-threshold for the NN system, where the potentials are �tted, and at limit of the �t

range of the two potentials Bonn-B and AV18. For lower energy we have already seen

that our 3D 
al
ulations agree with the 
onverged standard PW ones.

The reason of 
hoosing higher energies is the following. First, the 3D formulation

is espe
ially advantageous at higher energies. Se
ond, later we 
onsider three-nu
leon

pro
esses su
h as the proton-deuteron break-up pro
ess. For this rea
tion data exist at

higher energies up to about 500 MeV. The o�-the-energy-shell (o�-shell) NN T-matrix

elements are the input for 
al
ulations of this pro
ess. Thus, a 
omparison of our results

for the NN observables to data are important.

In Figs. 4.17-4.22 we present various observables from 3D 
al
ulations for both po-

tentials Bonn-B and AV18 together with the partial wave analyses (PWA). The PWA

and data are taken from CNS DAC (http://gwda
.phys.gwu.edu/). In the �gure 
aptions

we give the individual sour
e of the experimental data. We in
lude also observables for

the pp system in this evaluation (see Figs. 4.18 and 4.22), sin
e the proton-deuteron

break-up pro
ess involve both np and pp sub-systems. In general the �gures show a

good agreement between our 
al
ulations and data as well as the PWA. Even for the pp

system in Figs. 4.18 and 4.22 the Bonn-B potential predi
ts the data reasonably well. In

most 
ases predi
tions from the AV18 potential and the PWA are 
lose to ea
h other.

We 
on
lude from this evaluation that even for these higher energies our 3D 
al
ulations

using the two NN potentials Bonn-B and AV18 are a

eptable.



4.2 Results and Dis
ussions 65

jmax = 10

jmax = 8

jmax = 6

jmax = 4

3D

�


m

[deg℄

d

�

d

�

[

m

b

/

s

r

℄

180120600

15

11

7

3

Figure 4.11: np spin averaged di�erential 
ross se
tion at E

lab

= 100 MeV. The 
urve

3D is obtained from the 3D 
al
ulation. The other 
urves are obtained from the PW


al
ulations with indi
ated maximum NN total angular momentum j

max

.

jmax = 8

jmax = 6

jmax = 4

3D

�


m

[deg℄

A

y

180120600

0.5

0.2

-0.1

Figure 4.12: Same as Fig.4.11, but for analyzing power A

y

.
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jmax = 10

jmax = 8

jmax = 6

jmax = 4

3D

�


m

[deg℄

D

t

180120600

1.0

0.5

0.0

-0.5

Figure 4.13: Same as Fig.4.11, but for polarization transfer 
oeÆ
ient D

t

.
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jmax = 12

jmax = 8

jmax = 6

3D
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[deg℄

d

�

d

�

[

m
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/
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℄
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12
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4

0

Figure 4.14: Same as Fig.4.11, but for E

lab

= 300 MeV.
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jmax = 12

jmax = 10

jmax = 8

jmax = 6

3D

�


m

[deg℄

A
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180120600
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0.3

0.0

-0.3

Figure 4.15: Same as Fig.4.12, but for E

lab

= 300 MeV.
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jmax = 6
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�


m

[deg℄
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180120600
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0.2
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Figure 4.16: Same as Fig.4.13, but for E

lab

= 300 MeV.
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AV18

Bonn-B

PWA

EXP

�


m

[deg℄

d

�

d

�

[

m

b

/

s

r

℄

1801581361149270

11.0

8.5

6.0

3.5

1.0

Figure 4.17: np spin averaged di�erential 
ross se
tion at E

lab

= 340 MeV. \EXP" are

data taken from Franz, PS87, 14 (2000). The 
urve \PWA" is obtained from partial wave

analyses, the 
urve \Bonn-B" from 
al
ulations based on the Bonn-B potential and the


urve \AV18" from 
al
ulations based on the AV18 potential.

AV18

Bonn-B

PWA

EXP

�


m

[deg℄

A

y

100755025

0.50

0.35

0.20

0.05

-0.10

Figure 4.18: Same as Fig. 4.17, but for pp analyzing power A

y

at E

lab

= 350 MeV. Data

sour
e is Prezwoski, Phys. Rev. C58, 1897 (1998).
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AV18

Bonn-B

PWA

EXP2

EXP1

�


m

[deg℄

D

1701481261048260

1.0

0.6

0.2

-0.2

-0.6

Figure 4.19: Same as Fig. 4.17, but for np depolarization D at E

lab

= 380 MeV. Data

sour
e for both \EXP1" and \EXP2" is Arnold, EPJC17, 83 (2000).
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�


m
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D
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0.30

-0.05

-0.40

Figure 4.20: Same as Fig. 4.17, but for np polarization transfer 
oeÆ
ient D

t

at E

lab

= 386

MeV. Data sour
e for both \EXP1" and \EXP2" is Ahmidou
h, EPJC2, 627 (1998).
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AV18
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[deg℄
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Chapter 5

THREE-DIMENSIONAL

FORMULATION FOR THE

DEUTERON

The three-dimensional approa
h for NN s
attering developed in Chapter 3 was started

with the 
reation of the momentum-heli
ity basis. On
e this basis is de�ned the s
attering

equation is proje
ted on this basis and the s
attering as well as the NN potential matrix

elements are 
al
ulated in that basis. Thus, it is general and appli
able not solely to NN

s
attering but also to the NN bound system, the deuteron. In this 
ase, the nonrelativisti


deuteron equation and the states are proje
ted on the momentum-heli
ity basis.

The motivation to use dire
tly the relative momentum ve
tor in 
al
ulating NN s
atter-

ing is to avoid the 
ompli
ations whi
h o

ur in the standard partial wave de
omposition,

when very many partial waves take part in the pro
ess. Sin
e the deuteron state 
onsists

of only two partial wave proje
ted 
omponents, namely s and d waves, there is no su
h

a 
ompli
ation. However, developing the three-dimensional method leads to the use of

a three-dimensional representation of the NN potential, in other words we abolish the

partial wave representation of the NN potential. If one wants to use the potential de�ned

in three-dimensional fashion, then it is ne
essary to apply the three-dimensional method

to the deuteron as well. It is also of interest to investigate the deuteron properties in a

three-dimensional fashion in momentum spa
e. In 
on�guration spa
e a 
orresponding

three-dimensional investigation on the deuteron wave fun
tion and densities based on the

NN potential AV18 [20℄ has been 
arried out in Ref. [45℄.

In addition we derive the deuteron wave fun
tion in operator form in momentum

spa
e. The simple stru
ture of the wave fun
tion in spin operators is suitable for the

momentum-heli
ity basis and hen
e poses no diÆ
ulties in proje
ting the wave fun
tion

71
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on this basis. The proje
tion gives analyti
 expressions of the angular behavior of the

deuteron wave fun
tion, whi
h are di�erent from the familiar ones. The deuteron wave

fun
tion in operator form enables to investigate probability densities of various internal

spin 
on�gurations of the deuteron. The resulting expressions have an analyti
 angular

behavior. In 
on�guration spa
e a 
orresponding expression of the deuteron wave fun
tion


an be found in Refs. [46, 47℄.

We present two formulations for the deuteron in the momentum-heli
ity basis. The

di�eren
es of these two formulations emerge from the wave fun
tion and show by no means


ontradi
tions between the two formulations. In the �rst formulation we dire
tly proje
t

the deuteron state on the momentum-heli
ity basis, thus introdu
ing the wave fun
tion


omponents of the deuteron in this basis. In the se
ond formulation we �rst derive an

operator form of the deuteron wave fun
tion and then proje
t it on the momentum-heli
ity

basis. The wave fun
tion 
omponents obtained in this manner exhibit an analyti
 angular

behavior.

We des
ribe the �rst formulation in Se
tion 5.1, where we begin with the expansion

of the deuteron state in the momentum-heli
ity basis and at the same time introdu
e the

deuteron wave fun
tion 
omponents in this basis. We evaluate the normalization of these

wave fun
tion 
omponents as well as the deuteron density. Next we proje
t the deuteron

eigenvalue equation on the momentum-heli
ity basis and end up with a set of two 
oupled

integral equations in two variables, i.e. the magnitude of the relative momentum and the

angle between the relative momentum and some arbitrary z-axis. We evaluate the partial

wave 
omponents, the s and d waves of the deuteron wave fun
tion, in terms of the wave

fun
tion 
omponents in the momentum-heli
ity basis to test the formulation.

The se
ond formulation is des
ribed in Se
tion 5.2. We begin with the derivation of

the deuteron wave fun
tion in operator form, in whi
h we make use of the deuteron partial

wave 
omponents s and d waves. Next we proje
t the wave fun
tion on the momentum-

heli
ity basis. As result we 
an extra
t the angular parts of the wave fun
tion 
omponents,

whi
h are analyti
. We pro
eed with further simplifying the deuteron eigenvalue equation

obtained in the �rst formulation, and �nally get a set of two 
oupled integral equations

in one variable, i.e. the magnitude of the relative momentum, from whi
h one 
an get

the radial parts (in momentum spa
e) of the deuteron wave fun
tion 
omponents. We


onne
t these radial parts of the deuteron wave fun
tion 
omponents to the deuteron s

and d waves.

Using the deuteron wave fun
tion in operator form we 
an investigate probability

densities of various internal spin 
on�gurations of the deuteron. For an overall polarized

deuteron there are various possible spin orientations of the two nu
leons in the deuteron.



5.1 Formulation I 73

For instan
e, both nu
leons have their spins up, or one nu
leon has its spin up and the

other down. We derive in Se
tion 5.3 analyti
 expressions of the 
orresponding probability

densities and display the results.

5.1 Formulation I

5.1.1 Deuteron Wave Fun
tion in the Momentum-Heli
ity Basis

Consider j	

M

d

d

i as the deuteron state, with M

d

being the proje
tion of the total angular

momentum along an arbitrary z-axis. The state will be expanded in the momentum-

heli
ity basis jq;
^
qS�; ti

�a

de�ned in Eq. (3.16). Inserting the 
ompleteness relation for

the momentum-heli
ity basis given in Eq. (3.26) gives

�

�

�	

M

d

d

E

=

1

4

1

X

�=�1

Z

dq jq;
^
q1�; 0i

1a

1a

hq;
^
q1�; 0j 	

M

d

d

E

=

1

4

Z

dq

n

jq;
^
q11; 0i

1a

1a

hq;
^
q11; 0j 	

M

d

d

E

+ jq;
^
q10; 0i

1a

1a

hq;
^
q10; 0j 	

M

d
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E

+ jq;
^
q1� 1; 0i

1a
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hq;
^
q1� 1; 0j 	

M

d

d

Eo

; (5.1)

in whi
h we have inserted the deuteron properties, i.e. S = 1, t = 0 and the parity is

even. A

ording to Eq. (3.44) the momentum-heli
ity basis 
an be written as

jq;
^
qS�; ti

�a

= (jqi+ �

�

j�qi) j
^
qS�i jti ; (5.2)

and this together with Eq. (3.20) gives the following symmetry relation for the momentum-

heli
ity basis

jq;
^
qS�; ti

�a

= �

�

(�)

S

(j�qi+ �

�

jqi) j�
^
qS � �i jti

= �

�

(�)

S

j�q;�
^
qS � �; ti

�a

: (5.3)

Thus, we 
an simplify Eq. (5.1) to
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: (5.4)
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In the last step of Eq. (5.4) we have de�ned the deuteron wave fun
tion 
omponent

in the momentum-heli
ity basis as

'

M

d

�

(q) �

1a

hq;
^
q1�; 0j 	

M

d

d

E

: (5.5)

Sin
e the state jq;
^
qS�i is obtained by rotating the state jq

^
z;

^
zS�i by means of a rotation

operator

R(
^
q) = exp�iJ

z

� exp�iJ

y

�; (5.6)

as

jq;
^
qS�i = R(

^
q) jq

^
z;

^
zS�i ; (5.7)

where J = L+ S is the operator of total angular momentum, it follows that
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: (5.8)

In this way, we 
an pull out the azimuthal dependen
y of '

M

d

�

(q) as

'

M

d

�

(q) � '

M

d

�

(q; �)e

iM

d

�

; (5.9)

and �nally get the expansion of the deuteron state in the momentum-heli
ity basis as

�
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: (5.10)

The normalization of the wave fun
tion 
omponents '

M

d

�

(q; �) 
an be determined from

the normalization of the deuteron state a

ording to the following equation
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In obtaining this equation we have used the orthonormality of the momentum-heli
ity

basis given in Eq. (3.23). To pro
eed we need to know the symmetry property of '

M

d

�

(q; �).
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Using the symmetry relation given in Eq. (5.3) we 
an �nd the relation between '

M

d

�

(q)

and '

M

d

��

(�q) as
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and therefore,
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Thus, the normalization of '

M

d

�

(q; �) is determined by the following equation:
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Now we de�ne the deuteron density �
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(q) as
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su
h, that the probability to �nd a deuteron in any possible heli
ity state and having

the relative momentum of the two nu
leons between q and q + �q is �

M

d

(q)�q. This

de�nition follows naturally from the following algebra:
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Inserting Eq. (5.10) into Eq. (5.15) this yields

�

M

d

(q) =

1

4

1

X

�=�1

Z

dq

0

e

�iM

d

�

0

�

1

2

'

M

d

�

1

(q

0

; �

0

)

1a

hq

0

;
^
q

0

11; 0j q;
^
q1�; 0i

1a

+

1

4

'

M

d

�

0

(q

0

; �

0

)

1a

hq

0

;
^
q

0

10; 0j q;
^
q1�; 0i

1a

�

�

Z

dq

00

�

1

2

1a

hq;
^
q1�; 0 jq

00

;
^
q

00

11; 0i

1a

'

M

d

1

(q

00

; �

00

)

+

1

4

1a

hq;
^
q1�; 0 jq

00

;
^
q

00

10; 0i

1a

'

M

d

0

(q

00

; �)

�

e

iM

d

�

00

=

1

4

1

X

�=�1

n

'

M

d

�

1

(q; �)e

�iM

d

�

Æ

�1

� '

M

d

�

1

(q; � � �)e

�iM

d

(�+�)

Æ

�;�1

+

1

2

'

M

d

�

0

(q; �)e

�iM

d

�

Æ

�0

�

1

2

'

M

d

�

0

(q; � � �)e

�iM

d

(�+�)

Æ

�0

�

�

n

'

M

d

1

(q; �)e

iM

d

�

Æ

�1

� '

M

d

1

(q; � � �)e

iM

d

(�+�)

Æ

�;�1



76 5 Three-Dimensional Formulation for the Deuteron

+

1

2

'

M

d

0

(q; �)e

iM

d

�

Æ

�0

�

1

2

'

M

d

0

(q; � � �)e

iM

d

(�+�

Æ

�0

�

=

1

4

1

X

�=�1

n

'

M

d

�

1

(q)Æ

�1

� '

M

d

�

1

(�q)Æ

�;�1

+ '

M

d

�

0

(q)Æ

�0

o

�

n

'

M

d

1

(q)Æ

�1

� '

M

d

1

(�q)Æ

�;�1

+ '

M

d

0

(q)Æ

�0

o

: (5.17)

Thus, it follows that
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5.1.2 Two-Dimensional Deuteron Eigenvalue Equation

The deuteron state j	
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i satis�es the eigenvalue equation
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where E
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is the deuteron binding energy. Proje
ting this eigenvalue equation on the state
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Hen
e, the proje
ted eigenvalue equation for the deuteron on the momentum-heli
ity basis


onsists of a set of two 
oupled integral equations
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�

= 0; (5.21)
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where � = 1; 0. The wave fun
tion 
omponents '

M

d

�

(q; �) have no azimuthal dependen
e,

and therefore the �

0

-integral in this equation 
an be 
arried out independently. Re
alling

the de�nition given in Eq. (3.70), the �nal expression for the deuteron eigenvalue equation

is given as
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This resulting set of equations for the deuteron, whi
h 
onsists of two 
oupled two-

dimensional integral equations, is 
onsistent with the set of equations for a NN system

in s
attering states evaluated in Chapter 3 (see Eq. (3.73)). Arriving at this point we

would like to give some remarks. The deuteron eigenvalue equation given in Eq. (5.22)

and thus the resulting deuteron wave fun
tion 
omponents from this equation, whi
h are

de�ned in Eq. (5.9), are obtained with the assuming of the deuteron properties, i.e. S = 1,

t = 0 and 
onsequently the parity being even. As a matter of fa
t this assumption is not

ne
essary. Even if we obtain a set of equations for a NN bound system with any spin,

isospin and parity, a 
al
ulation using a realisti
 NN potential will show that the solution

of the equations exists only for that 
ertain quantum numbers. In other words, nature

will reveal itself without additional assumptions. Therefore, for this approa
h there is no

a priori knowledge needed, the approa
h will automati
ally provide full insight into the

deuteron.

5.1.3 Deuteron Partial Wave Proje
ted Wave Fun
tion

Now we would like to 
onne
t the deuteron wave fun
tion 
omponents '

M

d

�

(q; �) with the

standard partial wave 
omponents  

l

(q) of the deuteron wave fun
tion, whi
h are de�ned

as

 

l

(q) � hq(l1)jm; 0j 	

M

d

d

E

; (5.23)

where jq(lS)jm; ti is the partial wave basis given in Eq. (3.84). Again, for simpli
ity, we

use the already known spin and isospin of the deuteron, but left l, j and m arbitrary,

whi
h are the orbital, total and magneti
 total angular momentum quantum numbers,

respe
tively.

We begin by inserting into the proje
tion in Eq. (5.23) the expansion of

�

�

�	

M

d

d

E

given

in Eq. (5.10):
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: (5.24)
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Re
alling the overlap given in Eq. (3.88) and using Eq. (5.2), the s
alar produ
t of the

partial wave and momentum-heli
ity basis is given as
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in whi
h we have used the 
omplex 
onjugate of the relation given in Eq. (3.91) as

well as the 
omplex 
onjugate of an addition theorem for Wigner's D-fun
tions given

in Eq. (3.100). Inserting this s
alar produ
t into Eq. (5.24) gives
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(5.26)

Equation (5.26) reveals that the partial wave proje
tion of the deuteron state exists only

for m = M

d

and even l, whi
h demonstrates the even parity of the deuteron. Thus, we

obtain
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q
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os �

0

�

1

2

C(l1j; 011)d

j

M

d

1

(�

0

)'

M

d

1

(q; �

0

)

+

1

4

C(l1j; 000)d

j

M

d

0

(�

0

)'

M

d

0

(q; �

0

)

�

: (5.27)

Equation (5.27) does not exhibit exa
tly the well known deuteron quantum numbers l,

j and m. These quantum numbers must be determined by expli
it 
al
ulations, in whi
h
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one inserts into Eq. (5.27) the deuteron wave fun
tion 
omponent '

M

d

�

(q; �) obtained as

the solution of Eq. (5.22).

5.1.4 Expli
it Solution of the Two-Dimensional Deuteron Eigen-

value Equation

In this se
tion we show results from numeri
al evaluations of Eq. (5.22). To solve this

eigenvalue equation we use the power method [48, 49℄ and get the deuteron binding

energy E

d

as well as the deuteron wave fun
tion 
omponents '

M

d

�

(q; �). A modi�
ation

to the power method is ne
essary as des
ribed in Ref. [50℄ to ex
lude unphysi
al solutions


orresponding to bound states in the repulsive 
ore region of the NN for
e. The 
al
u-

lations are 
arried out based on the NN potentials Bonn-B [21℄ and AV18 [20℄.

The integrals in Eq. (5.22) are evaluated by means of the Gauss-Legendre quadrature.

For both potentials 10 integration points for the �

0

-integration and 32 integration points

for the 
os �

0

-integration are suÆ
ient. The hyperboli
 mapping with 
ut-o� (see Appendix

E) is employed for the q

0

-integration. Using the Bonn-B potential we obtain the deuteron

binding energy 2.224 MeV, with the q

0

-integration interval being 
ut o� at 30 fm

�1

. Using

the AV18 potential the resulting deuteron binding energy is 2.225 MeV and the 
ut o� is

at 8 fm

�1

.

In Fig. 5.1 we display the deuteron wave fun
tion 
omponents '

M

d

�

(q; �) for M

d

= 0

as fun
tions of q and 
os �. The �gures on the left result from 
al
ulations based on the

Bonn-B potential and those on the right on the AV18 potential. The results obtained

from the two potentials look quite similar. Both drop steeply as the magnitude of the

relative momentum between the two nu
leons inside the deuteron in
reases from zero to

about 100 MeV/
. The wave fun
tion 
omponent '

0

0

(q; �) shows a 
osine-like behavior

indi
ated at q = 0 by the straight line 
onne
ting its maximum at � = 0 with its minimum

at � = 180

o

through zero at � = 90

o

. In 
ontrast, the wave fun
tion 
omponent '

0

1

(q; �)

displays sine-like behavior; it peaks at � = 90

o

and vanishes at � = 0 and 180

o

. The

�gures reveal that the maximum of '

0

0

(q; �) is larger than that of '

0

1

(q; �).

Fig. 5.2 displays the deuteron wave fun
tion 
omponents '

M

d

�

(q; �) for M

d

= 1 and

�1 as fun
tions of q and 
os �, resulting from 
al
ulation based on the Bonn-B potential.

Cal
ulations based on the AV18 potential give very mu
h similar results and are therefore

not shown here. Similar to those with M

d

= 0, these wave fun
tion 
omponents also

de
ay qui
kly as the relative momentum between the two nu
leons inside the deuteron

in
reases from zero to 100 MeV/
. The two �gures (a) and (
) depi
t '

1

0

(q; �) and

'

�1

0

(q; �), respe
tively. Both vanish at � = 0 and 180

o

but di�er in sign for the other
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�-values. For instan
e, while at � = 90

o

'

1

0

(q; �) rea
hes its minimum, '

�1

0

(q; �) rea
hes

its maximum. The �gures (b) and (d) display '

1

1

(q; �) and '

�1

1

(q; �), respe
tively, whi
h

show also opposite behavior. '

1

1

(q; �) peaks at � = 0 and vanishes at � = 180

o

, whereas

'

�1

1

(q; �) peaks at � = 180

o

and vanishes at � = 0. This angular behavior of the two wave

fun
tion 
omponents suggests a relation between the two fun
tions, whi
h will be
ome


lear later in Se
tion 5.2.2. It is shown that for M

d

= 1 and �1 the maximum of '

M

d

1

(q; �)

is larger than that of '

M

d

0

(q; �).

Having obtained the deuteron wave fun
tion 
omponents, it is straightforward to 
al-


ulate the deuteron densities �

M

d

(q) given in Eq. (5.18). These densities based on the NN

potential Bonn-B are displayed in Fig. 5.3. The �gures (a) and (b) are for M

d

= 0, while

those �gures (
) and (d) are for M

d

= 1. For M

d

= �1 the density is the same as that

for M

d

= 1. Cal
ulations based AV18 potential give similar results and are therefore not

shown. The �gures (a) and (
) displays the two deuteron densities as fun
tions of q and


os �, and the �gures (b) and (d) depi
ts them as fun
tions of the Cartesian 
omponents

of q, i.e. q

x

and q

z

. A 
ut through the q

x

-q

z

-plane is shown, where ea
h 
urve represents

an equidensity 
urve. Sin
e the wave fun
tions are invariant under rotations around the

q

z

-axis, this 
urve rotated around the q

z

-axis will form a three-dimensional equidensity

surfa
e of the deuteron. For small q the two densities show uniform distributions along

�, and therefore the equidensity surfa
es are spheri
al. The largest densities at q = 0

for all M

d

's means that the most probable 
on�guration for the deuteron is that the two

nu
leons being at rest with respe
t to ea
h other.

The 
onne
tion to the standard partial wave expansion by means of Eq. (5.27) returns

the well known s and d wave 
omponents of the deuteron wave fun
tion. Thus, the

deuteron properties are well revealed by this numeri
al 
onne
tion.

5.2 Formulation II

5.2.1 Deuteron Wave Fun
tion in Operator Form

The deuteron has a neutron and a proton as its 
onstituents. These two nu
leons may

have their spins pointing in some possible dire
tions even if the deuteron is overall

polarized. Therefore, it is interesting to investigate the various possible deuteron in-

ternal spin 
on�gurations. In order to realize this it would be appropriate if the deuteron

wave fun
tion is stru
tured su
h that the deuteron spin state is separated from the other

parts. In this way, operators for some spin 
on�gurations 
an be applied to the wave

fun
tion and their probability densities 
an be 
al
ulated easily. We derive in this se
tion
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(a) (c)

(b) (d)

Figure 5.1: The deuteron wave fun
tion 
omponents for M

d

= 0 in units 10

�3

MeV

�1:5

as

fun
tions of q and 
os �. The �gures (a) and (b) are obtained based on the NN potential

Bonn-B and the �gures (
) and (d) are obtained based on AV18. Figures (a) and (
)

depi
t '

0

0

(q; �) whereas �gures (b) and (d) display '

0

1

(q; �).
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(a) (c)

(b) (d)

Figure 5.2: The deuteron wave fun
tion 
omponents based on Bonn-B as fun
tions of

q and 
os � in units 10

�3

MeV

�1:5

: (a) '

1

0

(q; �), (b) '

1

1

(q; �), (
) '

�1

0

(q; �) (
) and (d)

'

�1

1

(q; �).
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(a) (b)

(c) (d)

Figure 5.3: The deuteron density based on Bonn-B for M

d

= 0 ((a) and (b)) and M

d

= 1

((
) and (d)) in units 10

�6

MeV

�3

, shown as fun
tions of q and 
os � on the left side, and

of q

x

and q

z

on the right side. The 
ontours in �gures (b) and (d) represent equidensity


urves on the q

x

-q

z

-plane.
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the deuteron wave fun
tion in momentum spa
e with that stru
ture, evaluate its proper-

ties espe
ially its angular behavior and use it to get another set of deuteron eigenvalue

equation. The appli
ation of this wave fun
tion to the evaluations of probability densities

for the deuteron internal spin 
on�gurations is presented in Se
tion 5.3.

We begin with the partial wave expansion of the deuteron state

�

�
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d

d

E
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=
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; 0i 
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(q); (5.28)

where  

l

(q) is de�ned in Eq. (5.23). The momentum spa
e representation of this expansion

results as
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where we have used the 
omplex 
onjugate of the proje
tion given in Eq. (3.87). Here j0i

denotes the isospin state jti with t = 0.

We would like to simplify this expression so that it has the form

	

M

d

d

(q) = f


0

 

0

(q) + 


2

 

2

(q)g j1M

d

i j0i ; (5.30)

where the deuteron spin state is separated j1M

d

i, and 


0

and 


2

are operators a
ting on it.

In fa
t, the operator 


0

is a 
onstant, i.e. 


0

=

1

p

4�

(see Eq. (5.29)). The operator 


2

must

be s
alar under rotation, sin
e the spin state j1M

d

i has already the 
orre
t transformation

property under this rotation. At the same time, a

ording to Eq. (5.29) this operator 


2

must 
onne
t the states j1� 1i, j10i and j11i to the state j1M

d

i. Thus, the operator 


2

has to be formed as 
ombination of the spheri
al 
omponents of the spin operators �

1

and �

2

.
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To pro
eed, we 
hoose as example M

d

= 1. Inserting M

d

= 1 into Eq. (5.29) gives
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The expli
it expressions of the spheri
al harmoni
 fun
tions are (see [32℄ for similar

expression in 
oordinate representation)
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where q

1

; q

0

and q

�1

are the spheri
al 
omponents of the momentum [31℄:
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Thus, we obtain
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To determine 
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we 
onsider �rst the 
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and obtain for the sample 
ase M
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q
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j1� 1i ; (5.38)

where

�

�

�

1

2

�

1

2

E

i

(i = 1; 2) are the spin states of the individual nu
leons. This equation

(5.38) 
ontains a
tually the l = 0 admixture of the deuteron wave fun
tion as 
an be seen

by proje
ting on Y

00

(
^
q). It 
an be removed by subtra
ting

1

3

q

2

j11i from it. This yields

�

�
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Compared to the 
orresponding terms in Eq. (5.36) it follows that this tensor operator

�

1

� q�

2

� q �

1

3

q

2

is already the 
orre
t form for 
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up to some fa
tor. Hen
e, 	

1
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results as
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where
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(q) (5.41)
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The expression in Eq. (5.40) was derived for M

d

= 1. Similar derivations for M

d

= 0

and M

d

= �1 show that this form with the 
orresponding spin state applies also to

M

d

= 0;�1:
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+
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5.2 Formulation II 87

	

�1

d

(q) = j1� 1i

1

p

4�

 

0

(q) j0i

+

n

j11i 3q

2

�1

� j10i 3q

0

q

�1

+ j1� 1i (q

2

0

+ q

1

q

�1

)

o

1

2q

2

s

1

2�

 

2

(q) j0i

=

�

�

 

0

(q) +

�

�

1

� q�

2

� q�

1

3

q

2

�

�

 

2

(q)

�

j1� 1i j0i : (5.44)

Thus, we obtain the deuteron wave fun
tion in operator form in momentum spa
e as

	

M

d

d

(q) =
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In the above expression the positive parity of the deuteron be
omes obvious, sin
e

	

M

d

d

(q) = 	

M

d

d

(�q). A 
orresponding expression in 
oordinate spa
e 
an be found in

Ref. [47℄, whi
h in fa
t goes ba
k to the work of Rarita and S
hwinger in 1941 [46℄.

We evaluate now the normalization of this deuteron wave fun
tion in operator form

given in Eq. (5.45). Using
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we obtain
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Thus, we get the standard normalization of the partial wave 
omponents of the deuteron

wave fun
tion.

5.2.2 Analyti
 Angular Behavior of the Deuteron Wave

Fun
tion

In this se
tion we would like to reevaluate the deuteron wave fun
tion 
omponents '

M

d
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(q)

de�ned in Eq. (5.5) by making use of the momentum representation 	

M

d
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(q) of the

deuteron state given in Eq. (5.45). The operator �
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� q in Eq. (5.45) 
an be ex-

pressed in terms of the total heli
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Thus, the deuteron wave fun
tion 
omponents in the momentum-heli
ity basis are given
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with the analyti
 angular behavior e

iM

d
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(�), where the d-matrix is expli
itly given

as [31℄
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We de�ne for the radial parts of the wave fun
tion 
omponents an angle independent

fun
tion �
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(q) as
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(From now on we 
all this fun
tion the amplitude �

�

(q).) Hen
e, the deuteron wave

fun
tion 
omponents in the momentum-heli
ity basis 
an be expressed as
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The fa
tor of 2 is kept in the expression for later 
onvenien
e, and '

M

d

�

(q; �) are the two-

dimensional wave fun
tion 
omponents de�ned in Eq. (5.9). The normalization of this

amplitude �

�

(q) 
an be obtained by inserting Eq. (5.53) into Eq. (5.14):
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whi
h agrees with Eq. (5.48). In the last step of Eq. (5.54) we have used the orthogonality

property of the d-matri
es:
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Let us now return to Se
tion 5.1.4 to evaluate some behavior of the results displayed

in that se
tion.

The wave fun
tion 
omponents '

M

d

�

(q; �) obtained from numeri
ally solving of Eq. (5.22)

display an angular behavior, whi
h should be 
ompared to the analyti
 one. With the

help of Eqs. (5.53) and (5.51) we 
an express '

M

d

�

(q; �) showing their analyti
 angular

behavior as

M

d

= 0 : '

0

0

(q; �) = 2�
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os � (5.56)
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(q)(1� 
os �): (5.61)

Clearly, the numeri
al angular behavior displayed in Figs. 5.1 and 5.2 agrees with the

analyti
 one.

At small q, where the maxima of j'

M

d

�

(q; �)j o

ur, the amplitude �
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(q) are

determined dominantly by the s-wave. Therefore, the d-matrix determines how the

maxima 
hange with � and M

d

. This explains why the maximum of j'
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(q; �)j is larger

than that of j'
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tly
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Using Eqs. (5.56)-(5.61) the analyti
 angular behavior of the deuteron densities given

in Eq. (5.18) 
an now be derived. We �nd for M
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For small q , where �

0

(q) and �

1

(q) are almost identi
al, �

0

(q) and �

�1

(q) are very mu
h

the same to ea
h other and are perfe
t spheres. For larger q these spheres are deformed

a

ording to the ratio j�

0

(q)=�

1

(q)j.

5.2.3 One-Dimensional Deuteron Eigenvalue Equation

Re
alling the derivation of the deuteron eigenvalue equation given in Eq. (5.22), we noti
e

that there we have been able to separate out the azimuthal integration. Sin
e we now know
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the angular behavior of the deuteron wave fun
tion 
omponents, we see that analyti
ally

the equation is separable into the angular and the radial parts. Finally we need to solve

only the radial part of that deuteron eigenvalue equation.

Inserting Eq. (5.53) into Eq. (5.21) gives

 

q

2

m

� E

d

!

�

�

(q)d

1

M

d

�

(�)

+

Z

dq

0

e

�iM

d

(���

0

)

�

1

2

V

110

�1

(q;q

0

)�

1

(q

0

)d

1

M

d

1

(�

0

) +

1

4

V

110

�0

(q;q

0

)�

0

(q

0

)d

1

M

d

0

(�

0

)

�

= 0:

(5.65)

This is an equation, whi
h is valid for any dire
tion of q. For
^
q =

^
z the azimuthal

dependen
ies of the potential 
an be fa
tored out similarly as in Eq. (3.53) to give
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and therefore, the equation is simpli�ed by 
hoosing this dire
tion:
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Equation (5.67) survives for M

d

= �, and this leads to
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This 
ondition M

d

= � for the equation to survive does not ex
lude the existen
e of its

solution for M

d

6= �. In fa
t, the solution for M

d

6= � at this spe
i�
 dire
tion
^
q =

^
z

vanishes, as displayed in Se
tion 5.1.4. By 
hoosing M

d

= 1 and 0 we have a 
losed system

of two 
oupled equations for the amplitudes �

1

and �

0

.

The 
os �

0

integration 
an be worked out separately and independent of the amplitudes
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equation (5.68) is redu
ed to a set of two 
oupled equations in one variable, namely q:
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As in the evaluations of Eq. (5.22) in Se
tion 5.1.4 we employ the power method to

solve this set of Eq. (5.70). We also take the same Gaussian-Legendre quadrature points

for the q

0

- and 
os �

0

-integrations. For the NN potential Bonn-B we obtain the deuteron

binding energy 2.224 MeV and for the AV18 potential 2.225 MeV. The amplitudes �

0

(q)

and �

1

(q) are displayed in Fig. 5.4 for the Bonn-B and in Fig. 5.5 for the AV18. The

�gures show that for small q the amplitudes �

0

(q) and �

1

(q) are of the same magnitude,

and both fall from their largest values by about one order of magnitude at q � 200 MeV/
.

The amplitude �

1

(q) has its �rst node at q � 300 MeV/
, whereas �

0

(q) has its own �rst

node at q � 900 MeV/
 for the Bonn-B and at q � 1000 MeV/
 for the AV18. Within the

momentum range shown the magnitude of �

0

(q) and �

1

(q) for the Bonn-B in general fall

o� with the same rates, whereas for the AV18 the magnitude of �

1

(q) de
reases slower

than that of �

0

(q).

5.2.4 Conne
tion to the Standard Partial Wave Representation

In Se
tion 5.1.3 we have started to 
onne
t the deuteron wave fun
tion 
omponents in

the momentum-heli
ity basis to the partial wave proje
ted 
omponents of the deuteron

state. We have obtained Eq. (5.27), whi
h left the determination of some deuteron

quantum numbers for numeri
al 
al
ulation. With the analyti
 angular behavior of

'

�

(q; �) given, we 
an 
ontinue deriving the 
onne
tion and �nd the remaining

quantum numbers. Inserting Eq. (5.53) into Eq. (5.27) yields
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; (5.71)

in whi
h we have used the orthogonality property of the d-matri
es given in Eq. (5.55).

It turns out that the 
onne
tion exists only for a total angular momentum j = 1, and the

Clebs
h-Gordon 
oeÆ
ients allow only l = 0 and l = 2. Thus, we obtain for the s and d

waves
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� f2�
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(q)g (5.72)
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(q)g ; (5.73)

whi
h is 
onsistent with Eq. (5.52).
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Figure 5.4: The absolute values of the amplitudes �

0

(q) and �

1

(q) in units MeV

�1:5

for

Bonn-B.
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Figure 5.5: Same as Fig. 5.4, but for AV18.
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5.3 Probability Densities for Di�erent Spin Con�-

gurations

In this se
tion we des
ribe the internal spin 
on�guration of the deuteron with the help of

the deuteron wave fun
tion in operator form given in Eq. (5.45). As example we 
hoose

an overall polarized deuteron with M

d

= 1. Cases of interest are if (1) both nu
leons

have their spins up, (2) both nu
leons have their spins down, (3) one nu
leon has spin

up and the other has spin down, (4) one nu
leon has spin up and the other has arbitrary

spin orientation and (5) one nu
leon has spin down and the other has arbitrary spin

orientation. The probability densities for these �ve 
ases are given below in terms of the

deuteron s and d waves.

1. probability density for both nu
leons having their spins up:
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2. probability density for both nu
leons having their spins down:
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3. probability density for one nu
leon having spin up and the other having spin down:
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4. probability density for one nu
leon having spin up and the other having arbitrary

spin orientation:
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5. probability density for one nu
leon having spin down and the other having arbitrary

spin orientation:
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The angular dependen
ies of all these fun
tions result from terms 
ontaining the

deuteron d-wave, whi
h is obvious sin
e the s-wave is spheri
ally symmetri
. Thus, these

probability densities for �ve di�erent internal spin 
on�gurations of the deuteron exhibit
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ombinations of angular behavior owned by the spheri
al harmoni
s fun
tions of orbital

angular momentum l = 0 and l = 2. These probability densities are shown in Figs. 5.6-

5.11. In Figs. 5.6, 5.8 and 5.10 the left side displays the probability densities as fun
tions

of q and 
os �, whereas the right side displays them as fun
tions of q

x

and q

z

. The 
ontours

in the the �gures on the right side represent equidensity 
urves in the q

x

-q

z

-plane, whi
h

rotated around the q

z

-axis form three-dimensional images of the equidensity surfa
es. All

the �gures shown results from the 
al
ulations based on the Bonn-B potential. Sin
e the

AV18 potential produ
es results of similar shapes they are not displayed.

Fig. 5.6 shows the probability densities for the �rst two 
ases. The �gures (a) and

(b) display �

1

""

(q), while those �gures (
) and (d) display �

1

##

(q). The probability density

�

1

""

(q) has its maximum at q = 0, telling that the 
on�guration where both nu
leon have

their spin up o

urs most probably when the nu
leons are at rest with respe
t to ea
h

other. In the momentum range shown �

1

""

(q) has a spheri
al shape, sin
e a

ording to

Eq. (5.74) it is dominated by the s-wave. The probability density �

1

##

(q) has a di�erent

shape. It vanishes at q=0 and rea
hes two maxima at jq

max

j � 100 MeV/
 along the

q

x

-axis (� =

�

2

). This tells that for the 
ase where the two nu
leons have their spin down

they have most probable momenta ba
k to ba
k and right to the polarization axis of the

deuteron. If the equidensity 
urves in Fig. 5.6(d) are rotated around the q

z

-axis they will

exhibit a toroidal shape of the equidensity surfa
es of this probability density, as shown

illustratively in Fig. 5.7, where two equidensity surfa
es are displayed.

In Fig. 5.8 we show the probability density given in Eq. (5.76) for the 
ase where

the two nu
leons have opposite spin dire
tions to ea
h other. This probability density is

given solely by the d-wave and a fun
tion of the angle �. Thus, �

1

##

(q) has four peaks

of equal hight in ea
h quadrant of the q

x

� q

z

-plane at jq

x

j = jq

z

j = q

max


os(

�

4

). Hen
e,

for this spin 
on�guration it is most probable that the two nu
leons have momenta ba
k

to ba
k and pointing at � = 45

o

. The rotated 
ontours in the q

x

-q

z

-plane around the

q

z

-axis lead to double toroidal stru
tures. This is shown illustratively in Fig. 5.9, where

two equidensity surfa
es are pi
ked and displayed. The inner tubes represent surfa
es of

higher density 
ompared to the outer ones.

Fig. 5.10 shows the probability densities for the last two 
on�gurations given in

Eqs. (5.77) and (5.78). The �gures (a) and (b) display �

1

"(1)

(q), whereas the �gures (
) and

(d) depi
t �

1

#(1)

(q). For the momentum range shown �

1

"(1)

(q) behaves very

similarly as �

1

""

(q) displayed in the �gures (a) and (b) of Fig. 5.6. This 
an be understood

as that �

1

""

(q) is larger than �

1

"#

(q) and thus dominates. The probability density �

1

#(1)

(q)

has the same maxima as that of �

1

##

(q) shown in the �gures (
) and (d) of Fig. 5.6(d),

but a slightly di�erent angular behavior. For a �xed q the 
hanges of �

1

#(1)

(q) with � are
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slower than that of �

1

##

(q). The 3D-image of �

1

#(1)

(q) is presented in Fig. 5.11, whi
h looks

similar to the one shown in Fig. 5.7.
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(a) (b)

(c) (d)

Figure 5.6: The probability densities �

1

""

(q) in units 10

�6

MeV

�3

((a) and (b)) and �

1

##

(q)

in units 10

�10

MeV

�3

((
) and (d)). The 
ontours represent equidensity 
urves in the

q

x

-q

z

-plane.



100 5 Three-Dimensional Formulation for the Deuteron

Figure 5.7: Two sele
ted equidensity surfa
es of �

1

##

(q). The image is 
reated by rotating

two of the equidensity 
urves of Fig. 5.6(d) around the q

z

-axis. Note that the q

z

-axis is

stret
hed out with respe
t to the other two axes.
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(a) (b)

Figure 5.8: The probability density �

1

"#

(q) in units 10

�10

MeV

�3

. The 
ontours represent

equidensity 
urves in the q

x

-q

z

-plane.
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Figure 5.9: Two sele
ted equidensity surfa
es of �

1

"#

(q). The image is 
reated by rotating

two of the equidensity 
urves of Fig. 5.8(b) around the q

z

-axis. Note that the q

z

-axis is

stret
hed out with respe
t to the other two axes.



5.3 Probability Densities for Di�erent Spin Con�gurations 103

(a) (b)

(c) (d)

Figure 5.10: The probability densities �

1

"(1)

(q) in units 10

�6

MeV

�3

((a) and (b)) and

�

1

#(1)

(q) in units 10

�10

MeV

�3

((
) and (d)). The 
ontours represent equidensity 
urves in

the q

x

-q

z

-plane.
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Figure 5.11: Two sele
ted equidensity surfa
es of �

1

#(1)

(q). The image is 
reated by

rotating two of the equidensity 
urves of Fig. 5.10(d) around the q

z

-axis. Note that

the q

z

-axis is stret
hed out with respe
t to the other two axes.



Chapter 6

THREE-DIMENSIONAL

FORMULATION FOR THE

NUCLEON-DEUTERON

BREAK-UP PROCESS

In the previous 
hapters we des
ribed the 2N system treated in a 3D formulation as

derived in Chapter 3. The appli
ations in Chapter 4 for NN s
attering and in Chapter

5 for the deuteron agree with experimental data and standard PW 
al
ulations. The 3D

formulation allows to 
al
ulate at lower as well as at higher energies with a �xed number

of LSE's, whereas in a formulation based on partial waves the number of LSE's in
reases

with the energy.

In this 
hapter we extend the 3D formulation without partial wave de
omposition to

three-nu
leon (3N) s
attering. This 
an brie
y be summarized as follows. Cal
ulations

of 3N s
attering take as input the o�-shell NN T-matrix elements 
orresponding to the

pro
ess in the 2N subsystems. These o�-shell NN T-matrix elements are given through

the 3D approa
h presented in Chapter 3. Finally, the amplitude for the 3N s
attering 
an

be 
al
ulated dire
tly as a fun
tion of Ja
obi momenta des
ribing the relative motion of

the three nu
leons. We take the Faddeev's s
heme [1℄ for this purpose, whi
h is derived for

handling a three-parti
le system. Moreover we use only the lowest order of the multiple

s
attering series provided by the Faddeev equations.

We 
hoose one of the 3N s
attering 
hannels, the nu
leon-deuteron (Nd) break-up

pro
ess. We begin with a brief review on this pro
ess. As in the 2N 
ase, this review is

meant to give a short summary of ne
essary formulas and de�nitions of some terminologies

and quantities used in the following text.

105
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We 
onsider only the leading term of the break-up amplitude, sin
e we are interested in

higher energies and would like to see then whether the leading term is suÆ
ient to des
ribe

the pro
ess. From now on we mean by the break-up amplitude (or simply the amplitude)

the leading term and by the full break-up amplitude (the full amplitude) the leading term

plus the res
attering terms. After the brief review on the pro
ess we derive the expression

for the break-up amplitude in terms of the T-matrix elements in the momentum-heli
ity

basis.

Up to this point the formulation is nonrelativisti
. But in 
al
ulating higher energies

it is natural to expe
t some relativisti
 e�e
ts. Therefore, we pro
eed with in
luding

relativisti
 
orre
tion in our formulation by introdu
ing relativisti
 kinemati
s, whi
h is

based on the work in Ref. [51℄.

6.1 Review on the Nu
leon-Deuteron Break-Up Pro-


ess

This brief review 
overs kinemati
s, the amplitude, the Faddeev's equation and

observables of the nu
leon-deuteron pro
ess. These are given in more detail in, for exam-

ple, Refs. [5℄.

6.1.1 Kinemati
s of the Three-Nu
leon System in Laboratory

and Center of Mass Referen
e Frames

In momentum spa
e a 3N system 
an be des
ribed by using Ja
obi momenta as illustrated

in Fig.6.1(a). The Ja
obi momenta p

1

and q

1

des
ribe a 3N system in the 
.m. frame and

together with the laboratory momentum K of the 3N 
enter of mass des
ribe the system

in the laboratory frame. Figure 6.1(b) shows the 
y
li
 behavior of Ja
obi momenta p

i

and q

i

(i = 1; 2; 3), whi
h all des
ribe the same 3N system.

For a 3N system, that is a system of three equal mass parti
les, Ja
obi momenta p

i

and q

i

are given as

p

i

=

1

2

(k

j

� k

k

) q

i

=

2

3

�

k

i

�

1

2

(k

j

+ k

k

)

�

i; j; k = f1; 2; 3g = 
y
li
; (6.1)

where k

i

is the laboratory momentum of the i

th

nu
leon. Thus, p

i

is the relative mo-

mentum for the 2N subsystem of nu
leons j and k (jk-subsystem) and q

i

is the relative

momentum of nu
leon i to the jk-subsystem. These three pairs of p

i

, q

i

des
ribe the same

state. Hen
e,

jp

1

q

1

�i = jp

2

q

2

�i = jp

3

q

3

�i; (6.2)
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2

3

p

1

q1

1

2

3

1

p2

q2
2

3

1
p3

q3

2

3
K

p

1

c.m. frame

q1

1

laboratory frame

(a) (b)

Figure 6.1: (a) A 3N system in momentum spa
e 
an be des
ribed in the 
.m. frame using

Ja
obi momenta p

1

and q

1

and in the laboratory frame using the same Ja
obi momenta

together with laboratory momentum K of the 3N 
enter of mass. (b) Ja
obi momenta

are 
y
li
 and all des
ribe the same system.

where jp

i

;q

i

; �i is de�ned as the free 3N state and � stands for the dis
rete quantum

numbers of the three nu
leons. The relations between di�erent pairs of p

i

, q

i


an be

derived to be

p

j

= �

1

2

p

i

�

3

4

q

i

p

k

= �

1

2

p

i

+

3

4

q

i

q

j

= p

i

�

1

2

q

i

q

k

= �p

i

�

1

2

q

i

i; j; k = f1; 2; 3g = 
y
li
: (6.3)

In the Nd break-up pro
ess one has in the �nal state three free nu
leons, and in the

initial state the deuteron being at rest and a nu
leon 
oming with laboratory momentum

k

lab

, 
orresponding to its laboratory nonrelativisti
 kineti
 energy E

lab

as

k

lab

=

q

2mE

lab

: (6.4)

Let us 
hoose without loss of generality this in
oming nu
leon as nu
leon 1. Conservations

of total momentum and total energy in the laboratory frame are given by

k

lab

= k

1

+ k

2

+ k

3

(6.5)

k

2

lab

6m

+

3q

2

0

4m

+ E

d

=

(k

1

+ k

2

+ k

3

)

2

6m

+

3q

2

4m

+

p

2

m

; (6.6)

where E

d

is the deuteron binding energy, q

0

the relative momentum of the in
oming

nu
leon to the deuteron, p the relative momentum for the 23-subsystem and q the relative

momentum of nu
leon 1 to the 23-subsystem:

q

0

=

2

3

k

lab

(6.7)
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p =

1

2

(k

2

� k

3

) (6.8)

q =

2

3

�

k

1

�

1

2

(k

2

+ k

3

)

�

=

2

3

�

k

1

�

1

2

(k

lab

� k

1

)

�

= k

1

�

1

3

k

lab

: (6.9)

In both sides of Eq. (6.6) the �rst term is the kineti
 energy of the 3N 
enter of mass,

whi
h is equal to

1

3

E

lab

. The other terms sum up to the 
onserved total energy E


m

in

the 
.m. frame. Thus,

E


m

=

3q

2

0

4m

+ E

d

=

3q

2

4m

+

p

2

m

: (6.10)

This Eq. (6.10) also provides the relation between q and p.

We will 
onsider the in
lusive break-up pro
ess, where only one nu
leon is dete
ted in

the �nal state, whi
h is in this 
ase nu
leon 1. In the experiment the dete
tor is pla
ed

at a 
ertain position and hen
e the s
attering angle �

lab

is �xed. This s
attering angle

�

lab

determines the maximum value k

1;max

of the magnitude of the momentum k

1

of the

dete
ted nu
leon. Equation (6.9) leads to a quadrati
 equation in k

1

, with one of the

solutions being

k

1

=

1

3

k

lab


os �

lab

+

s

q

2

�

1

9

k

2

lab

sin

2

�

lab

: (6.11)

The other solution with negative square-root term is not 
onsidered, sin
e it is not

appropriate to �nd k

1;max

. Inserting into Eq. (6.11) the maximum value for q a

ord-

ing to Eq. (6.10) gives

k

1;max

=

1

3

k

lab


os �

lab

+

s

1

9

k

2

lab

(3 + 
os

2

�

lab

) +

4

3

mE

d

: (6.12)

6.1.2 Break-up Amplitude and the Faddeev's Equation

Let us de�ne U

full

0

as the full Nd break-up operator. For a system of identi
al parti
les

the full break-up operator 
an be written as

U

full

0

= (1 + P )T

F

: (6.13)

Here P is a permutation operator de�ned as

P � P

12

P

23

+ P

13

P

23

: (6.14)

The �rst term performs a 
y
li
 permutation, whi
h 
hanges the nu
leons' labels, for

example from (123) to (231), and the se
ond term an anti
y
li
 permutation operator,
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whi
h 
hanges the nu
leons' labels from (123) to (312). That notation T

F

in Eq. (6.13)

stands for the Faddeev operator obeying the Faddeev equation for the break-up pro
ess

[1℄:

T

F

= TP + TG

0

PT

F

: (6.15)

Here T is NN T-matrix and G

0

the free 3N propagator given as

G

0

 

3q

2

0

4m

+ E

d

!

=

1

3q

2

0

4m

+ E

d

�H

0

; (6.16)

where H

0

is the free 3N hamiltonian in the 
.m. frame and we have applied the 
.m. energy

given in the previous subse
tion.

Now we 
onsider only the leading term of the full break-up amplitude. This means we

take only the �rst term of the Faddeev operator given in Eq. (6.15). De�ning U

0

as the

break-up operator for this spe
ial 
ase, we have

U

0

= (1 + P )TP: (6.17)

The Nd break-up amplitude U

0

(p;q) is then de�ned as

U

0

(p;q) �

�

pqm

s1

m

s2

m

s3

�

1

�

2

�

3

�

�

�

�

U

0

�

�

�

�

q

0

m

0

s1

�

0

1

	

M

d

d

�

=

�

pqm

s1

m

s2

m

s3

�

1

�

2

�

3

�

�

�

�

(1 + P )TP

�

�

�

�

q

0

m

0

s1

�

0

1

	

M

d

d

�

: (6.18)

Here

jpqm

s1

m

s2

m

s3

�

1

�

2

�

3

i � jqm

s1

�

1

ijpm

s2

m

s3

�

2

�

3

i (6.19)

is the �nal not-antisymmetrized free state,

�

�

�q

0

m

0

s1

�

0

1

	

M

d

d

E

�

�

�

�q

0

m

0

s1

�

0

1

E

�

�

�	

M

d

d

E

(6.20)

the initial state, in whi
h only the deuteron state is antisymmetrized, m

si

; �

i

(i = 1; 2; 3)

�nal spins and isospins of the three nu
leons, m

0

s1

; �

0

1

initial spin and isospin of nu
leon 1

and

�

�

�	

M

d

d

E

the deuteron state with M

d

being the proje
tion of its total angular momentum

along an arbitrary z-axis. In the amplitude U

0

(p;q) we suppress the initial quantum

numbers as well as the �nal dis
rete quantum numbers for simpli
ity.

6.1.3 Cross Se
tion and Spin Observables

Similarly to Eq. (2.21) for the NN system, the expression for the expe
tation value

D

�

(1)

�

�

(2)

�

�

(3)




E

f

of a general spin observable for the Nd break-up pro
ess is given as

I

D

�

(1)

�

�

(2)

�

�

(3)




E

f

=

1

6

X

��

D

�

(1)

�

S

�

E

i

Tr

n

M�

(1)

�

S

�

M

y

�

(1)

�

�

(2)

�

�

(3)




o

; (6.21)
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where

I =

1

6

X

��

D

�

(1)

�

S

�

E

i

Tr

n

M�

(1)

�

S

�

M

y

o

(6.22)

is related to the di�erential 
ross se
tion summed over all possible �nal spin states. For

the break-up pro
ess the s
attering amplitude M is U

0

. Here �

�

(� = 0; 1; 2; 3) are the

2 x 2 matri
es given in Eq. (2.16) and S

�

(� = 0; 1; :::; 8) the 3 x 3 matri
es of the

general spin observables for spin-1 parti
les, in this 
ase the target deuteron. They are


ombinations of the matri
es of the Cartesian 
omponents S

x

; S

y

; S

z

of angular momentum

S = 1

S

x

=

1

p

2

0

B

B

B

�

0 1 0

1 0 1

0 1 0

1

C

C

C

A

S

y

=

1

p

2

0

B

B

B

�

0 �i 0

i 0 �i

0 i 0

1

C

C

C

A

S

z

=

0

B

B

B

�

1 0 0

0 0 0

0 0 �1

1

C

C

C

A

: (6.23)

(See Ref. [52℄ for more details.) For the in
lusive break-up pro
ess one has to sum over

all dire
tions of the relative momentum p, thus,

D

�

(1)

�

�

(2)

�

�

(3)




E

f

=

X

��

D

�

(1)

�

S

�

E

i

R

d
^
pTr

n

M�

(1)

�

S

�

M

y

�

(1)

�

�

(2)

�

�

(3)




o

6

R

d
^
p I

: (6.24)

We 
onsider 
ases where the deuteron is unpolarized, hen
e, S

�

= S

0

Æ

�0

= Æ

�0

.

Now we take a look at the spin averaged di�erential 
ross se
tion and some spin

observables, i.e. polarization, analyzing power and polarization transfer 
oeÆ
ients. Data

for these observables are given in the laboratory frame. Hen
e, we have to 
al
ulate these

observables in the laboratory frame. Though we 
an �rst 
al
ulate observables in the


.m. frame and later 
onne
t them with the ones in the laboratory frame, we 
hoose

to 
al
ulate dire
tly in the laboratory frame. This poses no diÆ
ulty. Ref. [53℄ give

the relations between polarization transfer 
oeÆ
ients in the 
.m. and in the laboratory

frames, in
luding the ones with relativisti
 kinemati
s.

We use the unit ve
tors

^

l;
^
n;

^
s;

^

l

0

;
^
n

0

;
^
s

0

in the laboratory frame de�ned in Eqs. (2.26)-

(2.30), with 
hanges in notations su
h that

^

k

1

is repla
ed by

^

k

lab

and

^

k

0

1

by

^

k

1

. Note that

the relation with the unit ve
tors in the 
.m. frame shown in Eqs. (2.26)-(2.30) is not

valid for the 3N s
attering. See Ref. [53℄ for the general formulae. Choosing

^

k

lab

= ẑ and

^

k

1

in the xz-plane, the laboratory unit ve
tors in a Cartesian 
oordinate system are given

by Eq. (2.31).

The spin averaged di�erential 
ross se
tion in the 
.m. frame for the in
lusive break-up

pro
ess is given by [5℄

d

3

�

dqd
^
q

= (2�)

4

m

2

pq

2

3q

0

Z

d
^
p I

0

; (6.25)
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with

I

0

�

1

6

Tr

n

MM

y

o

=

1

6

X

m

s1

m

s2

m

s3

m

0

s1

M

d

jU

0

(p;q)j

2

: (6.26)

In order to 
ompare with experimental data we need to 
al
ulate the 
ross se
tion in the

laboratory frame, written as a fun
tion of the nu
leon's outgoing kineti
 energy E

1

=

k

2

1

2m

and s
attering angle �

lab

. Using Eq. (6.9) we get dq = dk

1

. Hen
e, the 
ross se
tion in

the laboratory frame is obtained as

d

5

�

dE

1

d

^

k

1

= (2�)

4

m

3

pk

1

2k

lab

1

6

X

m

s1

m

s2

m

s3

m

0

s1

M

d

Z

d
^
pjU

0

(p;k

1

)j

2

: (6.27)

It should be pointed out that p is not independent, but determined by k

1

via Eqs. (6.10)

and (6.9).

In the following we give the polarization P

0

of the outgoing nu
leon, the analyzing

power A

y

and polarization transfer 
oeÆ
ients D

ij

�

1

6I

0

Tr

n

M(� �

^

j)M

y

(� �

^

i)

o

, where

we suppress the integration over
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In obtaining Eqs. (6.28)-(6.34) we have applied Eq. (2.31), whi
h gives the laboratory

unit ve
tors in a Cartesian 
oordinate system.

6.2 Three-Dimensional Nu
leon-Deuteron Break-Up

Amplitude

In this se
tion we derive an expression for the Nd break-up amplitude. Returning to

Eq. (6.18) the amplitude 
an be written in three terms as

U

0

(p;q) = U

(1)
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(p;q) + U

(2)

0
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For 
larity let us label the free 3N states as

jpq�i

i

= being the free 3N state, where nu
leons j and k form a 2N jk-subsystem,

dis
rete quantum numbers listed in � are to be understood in

nu
leons' order i, j, k and i,j,k = 1,2,3 are 
y
li
: (6.39)

If there is no label, that means the label is 1. Now we 
onsider U

(2)
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(p;q). We apply the

permutation operator P
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in Eq. (6.37) to the �nal state. This gives
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In Eq. (6.40) the �nal state represents a free 3N system, where nu
leons 1 and 2 form the

12-subsystem. Now we want to have the �nal state representing a system, where nu
leons

2 and 3 form the 23-subsystem. We use the relation for Ja
obi momenta given in Eq. (6.3)

and obtain
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Similarly for U
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(p;q) we get
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Thus, U

(1)

0

(p;q), U

(2)

0

(p;q) and U

(3)

0

(p;q) all have the same form and di�er from ea
h

other only in values of their variables. Therefore, it is suÆ
ient to work out a 3D expression

for one of them, whi
h we 
hoose U
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(p;q). The following repla
ements have to be applied

to get U
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We begin by inserting twi
e the following 
ompleteness relation for the free 3N system
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into Eq. (6.36). This gives
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The NN T-matrix is 
al
ulated at energy E
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:
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; (6.48)
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whi
h does not ne
essarily 
orresponds to the intermediate relative momenta p

0

.

The permutation part of Eq. (6.47) is worked out as follows with the help of the

relations for Ja
obi momenta given in Eq. (6.3):
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In the last equality we have arranged the delta fun
tions, in su
h a fashion that it 
ontains

only one integration variable. Next de�ning
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we get
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Now we insert Eq. (6.51) into U

(1)
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(p;q) in Eq. (6.47), and get
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In the last equality we made use of the antisymmetry of the deuteron state
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The proje
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in Eq. (6.52) is worked out in the following, where

the deuteron state is expanded in partial waves. We re
all the partial wave 
omponents
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(p) of the deuteron wave fun
tion, de�ned in Eq. (5.23).
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Here we meet the physi
al representation
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NN T-matrix, de�ned in Eq. (3.75). These T-matrix elements are 
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Hen
e, we obtained U
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These NN T-matrix elements T

�St
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0

(p;�;E

p

) are not the solution of our �nal LSE's

in Eq. (3.73). The solution of Eq. (3.73) would be T
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(p; �; �
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), whi
h are T-matrix

elements in the momentum-heli
ity basis with initial momentum in the z-dire
tion and
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This is evaluated in detail in Appendix F. Here we give only the results:
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where in the last equality we have applied the relation in Eq. (3.66). The exponential
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By inserting the relation Eq. (6.63) for T
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6.3 Relativisti
 Kinemati
s

In this se
tion we introdu
e relativisti
 kinemati
s into the formulation given in the previ-

ous se
tions. Thus, we reevaluate the maximum value k

1;max

of magnitude of the nu
leon's

outgoing momentum and the Ja
obi momenta p and q. We derive S-matrix elements for

the break-up pro
ess and the spin averaged di�erential 
ross se
tion. We adopt a formu-

lation in Ref. [51℄, whi
h is given for an arbitrary two-parti
le system. Note that in this

se
tion energy means relativisti
 energy, i.e. E =

p

m

2

+ k

2

, however, we do not use a

4-ve
tor notation. Thus, here k is the magnitude of a 3-ve
tor k. This is in 
ontrast to

Ref. [51℄, where k is a 4-ve
tor and k is its 3-ve
tor 
omponent.

6.3.1 Maximum of Magnitude of Nu
leon's Outgoing Mo-

mentum

Conservations of total energy and total momentum for the Nd break-up pro
ess are given

by
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where m

d

is the deuteron rest mass and E

i

(i = lab; 1; 2; 3) relativisti
 energies


orresponding to k

i

(i = lab; 1; 2; 3). In Eqs. (6.68) and (6.69) we de�ne E

23

as total
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energy and k
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as total momentum of the 23-subsystem in the laboratory frame. The

quantities E
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and k
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are 
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whi
h is Lorentz invariant. Here M

23

is 
alled the invariant mass of the 23-subsystem,

equal to the total energy of the 23-subsystem in its 
.m. frame. The minimal value of M

23

is 2m, where the two nu
leons are at rest in the 
.m. frame of the 23-subsystem. Together

these three equations (6.68), (6.69) and (6.70) determine the maximum value k

1;max

of

the magnitude of the nu
leon's outgoing momentum as shown in the following.

Inserting Eqs. (6.68) and (6.69) into Eq. (6.70) leads to
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This is a quadrati
 equations in k

1
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2
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+ C � 0; (6.72)

with
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Equation (6.72) is sket
hed in Fig. 6.2. Thus, k

1;max

o

urs where Eq. (6.72) equals zero

and is obtained as

k

1;max

=

�B �

p

B

2

� 4AC

2A

: (6.76)
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k1,max k1

Ak2 Bk C++1 1

Figure 6.2: A sket
h of Eq. (6.72).

6.3.2 Ja
obi Momenta

A system des
ribed by (E;k) in one frame 
an be des
ribed in other frame by (E

0

;k

0

) by

means of a Lorentz transformation L(v), where v is the relative velo
ity of the new frame

to the old frame. Thus [51℄,

(E

0

;k

0

) � L(v)(E;k); (6.77)

where

k

0

= k+ (
 � 1)(k �
^
v)

^
v � 
Ev (6.78)

E

0

= 
(E � k � v) (6.79)
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: (6.80)

Using Eqs. (6.77)-(6.80) with the appropriate velo
ity v = u we 
an transform our 3N

system from the laboratory frame to the 
.m. frame and �nd the 
orresponding Ja
obi

momenta p and q.

First we take the 23-subsystem and derive p. We bring the 23-subsystem from the

laboratory frame to its 
.m. frame (the 23-frame) by the following Lorentz transformation

u =

k

23

E
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(6.81)
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): (6.83)

Here k

0

i

and E

0

i

(i = 2; 3) are momenta and energies of nu
leons 2 and 3 in the 23-frame.

A

ording to Eq. (6.78) the Ja
obi momentum p, de�ned by the transformation given in

Eqs. (6.82)-(6.83), is given by the following two equations
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where we have used
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Instead of two expressions de�ning p we want to have one expression as a 
ombination of

Eqs. (6.84) and (6.85). Subtra
ting Eq. (6.85) from Eq. (6.84) leads to

p =

1

2

(k

2

� k

3

) +

k

23

2M

23

 

(k

2

� k

3

) � k

23

E

23

+M

23

� (E

2

� E

3

)

!

: (6.87)

Next using

(k

2

� k

3

) � k

23

= k

2

2

� k

2

3

= E

2

2

� E

2

3

= (E

2

� E

3

)E

23

(6.88)

we get the �nal expression for p as
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Thus, p in Eq. (6.89) 
onsists of a nonrelativisti
 part (the �rst term) and a relativisti



orre
tion (the se
ond term), whi
h nonrelativisti
ally vanishes (E

2

= E

3

' m).

The energies E
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We obtain the total energy M

23

in the 23-frame as
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Using Eqs. (6.91) and (6.68)-(6.70) the magnitude of p 
an be 
al
ulated as
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Here we would like to give some remarks. Sin
e we 
onsider the in
lusive Nd break-up

pro
ess, we sum over all dire
tions of p, whi
h are independent of the kinemati
s (E

1

;k

1

)

of the single dete
ted nu
leon. Therefore, a ve
torial expression of p, su
h as the one in

Eq. (6.89), is not required. It is the expression given in Eq. (6.92) for the magnitude of p,

whi
h is needed. We have nevertheless worked out Eq. (6.89) to 
omplete the presentation.

Now we derive the Ja
obi momentum q in a similar way as we derived p. First we

de�ne some notation, namely k

0

1

and E

0

1

be the momentum and the energy of nu
leon 1

in the 
.m. frame, k

0

23

and E
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the momentum and the energy of the 23-subsystem in the


.m. frame. E
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is the total energy in the laboratory frame given by
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Here we also de�ne M

0

as the total energy in the 
.m. frame or the invariant mass of the

system
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whi
h is 
onne
ted to the total energy E

0

and the total momentum k
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in the laboratory

frame as given by the following Lorentz invariant relation
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Thus, with given E
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and k
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an 
al
ulate M
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as given by
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whi
h is 
onserved.

To bring the system from the laboratory frame to the 
.m. frame we apply the following

Lorentz transformation
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with the 
orresponding 
 fa
tor
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The Ja
obi momentum q is given by two equations
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and the energies E

0

1

, E

0

23

and M

0

in the 
.m. frame are given in terms of the magnitudes

of Ja
obi momenta p and q as
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As in 
ase of p, we want to have one expression for q as a 
ombination of Eqs. (6.100)

and (6.101). Here a ve
torial expression of q is needed, sin
e q depends on the kinemati
s

(E
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;k

1

) of the dete
ted nu
leon.

Subtra
ting Eq. (6.101) from Eq. (6.100) leads to

q =

1

2

(k

1

� k

23

) +

k

lab

2M

0

 

(k

1

� k

23

) � k

lab

E

0

+M

0

� (E

1

� E

23

)

!

: (6.105)

Using Eqs. (6.93)-(6.95) and (6.102)-(6.104) we get
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We insert Eq. (6.106) into Eq. (6.105) and obtain the �nal expression for q as
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In the last equality we have applied total momentum 
onservation given in Eq. (6.69).

The magnitude of q is 
al
ulated using Eq. (6.104) as follows:
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Thus,
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where M

0

is given in Eq. (6.96). Equation (6.109) also shows the relation between q and

p, if relativity is taken into a

ount.

Now let us 
onsider the initial situation and �nd out the Ja
obi momentum q

0

, the

energies E

0

lab

of the in
oming nu
leon and E

0

d

of the deuteron in the 
.m. frame. Repla
ing

in Eq. (6.105) k

1

with k

lab
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Using Eq. (6.79) E

0
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and E

0

d

are given as
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Hen
e, E

0

lab

and E

0

d

sum up to M

0

= E

0

1

+E

0

23

as required by total energy 
onservation in

the 
.m. frame.

6.3.3 S-Matrix and Cross Se
tion

Here we derive S-matrix elements in the lab frame by using relativisti
 kinemati
s and


onne
t with the Nd break-up amplitude. We negle
t the boost e�e
ts on the magneti


spin quantum numbers, in other words we do not take Wigner rotation into a

ount.

From the S-matrix elements we derive the spin averaged di�erential 
ross se
tion by using

the standard relativisti
 time-dependent s
attering theory.

Suppressing all dis
rete quantum numbers we de�ne S-matrix elements in the labora-

tory frame as
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and in the 
.m. frame as
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i: (6.114)

One has to bear in mind that there is the deuteron state j	

d

i in the initial state in the


.m. frame, whi
h is here suppressed. The deuteron laboratory momentum k

d

is given

for 
larity though it has a value of zero. In Eq. (6.114) p, q, q
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are the Ja
obi momenta

given in Eqs. (6.89), (6.107), (6.110), respe
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The Ja
obian J(k

2

;k

3

) of the transformation in Eq. (6.115) from variables (k

2

;k

3

) to

(p;k

23

) is given as [51℄

J(k

2

;k

3

) =

�

�

�

�

�

�(k

2

;k

3

)
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23

)

�

�

�

�

�

=

E

2

E
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E

23

M

23

E

0

2

E

0

3

=

4E

2

E

3

E

23

M

23

; (6.117)

where the last equality results by means of Eq. (6.91) for M

23

. Similarly, the Ja
obians

J(k

1

;k

23

) in Eq. (6.115) and J(k

lab

;k

d

) in Eq. (6.116) are given as

J(k

1

;k

23

) =

�

�

�

�

�

�(k

1

;k

23

)

�(q;k

1

+ k
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)

�

�

�

�

�

=

E

1

E

23

E

0

M

0

E

0

1

E

0

23
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: (6.119)

One therefore arrives at the relation between S(k

1

;k

2

;k

3

) and S(p;q) as

S(k

1

;k

2

;k

3

) = hk

1

k

2

k

3

jSjk
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k

d

i

= J

�
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2

(k
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�
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;k

23

)J

�
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(k
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i
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23

)J(k
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)g

�
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2

S(p;q);(6.120)

where the delta fun
tion ensures total momentum 
onservation.

We pro
eed to 
onne
t S(k

1

;k

2

;k

3

) with the amplitude U

0

(p;q), de�ned in Eq. (6.18).

In fa
t U

0

(p;q) is the T-matrix element for the Nd break-up pro
ess, whi
h is related to

S(p;q) as given in Eq. (2.5), but without the �rst term. Thus,

S(p;q) = �2�iÆ(E

0

1

+ E

0

23

� E

0

lab

� E

0

d

)U

0

(p;q): (6.121)

Inserting Eq. (6.121) into Eq. (6.120) leads to

S(k

1

;k

2

;k

3

) = �2�iÆ(k
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23
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+ E
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23
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Next we insert into Eq. (6.122) the identity

1

Æ(k
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� E
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+ E
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+ E
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+ E

23

+ E
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+m

d

; (6.123)

1

The identity in Eq. (6.123) 
an be proven as follows. Take E

0

and E as total energies in the laboratory

frame, K

0

and K the 
orresponding total momenta, M

0

and M total energies in the 
.m. frame, related

as

E

0

2

�K

0

2

= M

0

2

E

2

�K

2

= M

2

:

The energies E

0

, E, M

0

and M are required to be positive. Hen
e, Æ(M

0

2

�M

2

) 
an be evaluated as

Æ(M

0

2

�M

2

) = Æ ((M

0

�M)(M

0

+M)) =

Æ(M

0

�M)

M
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+M

+

Æ(M

0

+M)
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�M j
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Æ(M

0

�M)

M

0

+M

;

and similarly

Æ(E

0

2

�E

2

) =

Æ(E

0

�E)

E

0

+E

:

Using Æ(K

0

�K) to �x the momenta to be K

0

= K one obtains

Æ(K

0

�K)Æ(M

0

�M) = Æ(K

0

�K)Æ(M

0

2

�M

2

)(M

0
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= Æ(K
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�K)Æ(E

0

2
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0

2

� (E

2

�K

2

))(M

0

+M)

= Æ(K

0

�K)Æ(E

0

2

�E

2

)(M

0

+M)

= Æ(K

0

�K)Æ(E

0

�E)

M

0

+M

E

0

+E

;

whi
h proves the identity given in Eq. (6.123).
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and this gives

S(k
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2
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As the �nal step to simplify the expression we de�ne a fun
tion �(p;q) as
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; (6.125)

and thus obtain the relation between S(k

1

;k

2

;k

3

) and U

0

(p;q) as

S(k

1

;k

2

;k

3

) = �2�iÆ(k
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+ k

23

� k

lab

)Æ(E
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+ E

23

� E
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)�(p;q)U
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(p;q): (6.126)

At this point let us return to U

0

(p;q), whi
h has been derived in Se
tion 6.2 nonrela-

tivisti
ally. To a
hieve more 
onsisten
y with the relativisti
 kinemati
s being introdu
ed,

the amplitude U

0

(p;q) is 
al
ulated using relativisti
 values of its kinemati
s variables.

These variables are the Ja
obi momenta p, q, q

0

and the energy, for whi
h the NN

T-matrix elements are 
al
ulated. This is the kineti
 energy in the 23-subsystem. Take

for example U

(1)

0

(p;q), given in Eq. (6.65). The Ja
obi momenta p, q, q

0

are given in

Eqs. (6.89), (6.107), (6.110), respe
tively. The energy E

p

, for whi
h T

�St

��

0

(p; �; 
os �

0

;E

p

)

is 
al
ulated, is given as

E

p

= M

23

� 2m = 2

q

m

2

+ p

2

� 2m; (6.127)

di�erent from the nonrelativisti
 one, given in Eq. (6.48). In Eq. (6.127) 2m is the rest

mass of the 23-subsystem, thus, E

p

is the kineti
 energy in the 23-subsystem.

Now we derive the 
ross se
tion using the standard relativisti
 s
attering theory. The

delta fun
tions in Eq. (6.126) 
an be evaluated, with the arguments being zero, as
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; (6.128)
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where V and T stand for the whole normal spa
e volume and time. Hen
e, the squared

absolute value of the S-matrix element S(k

1

;k

2

;k

3

) is given as
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and the transition rate W from initial to �nal state per unit volume results as
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The outgoing 
ux dN , whi
h is the number of outgoing nu
leons per unit area and time,

with momenta within a range of dk

1

dk

2

dk

3

is given as
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while the in
oming 
ux j is given as

j =
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The target density is j

0

= (2�)

�3

. Thus, the di�erential 
ross se
tion d� is obtained as

d� =

dN
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For the in
lusive Nd break-up pro
ess the di�erential 
ross se
tion is 
al
ulated as a

fun
tion of the kineti
 energy E

k;1

and dire
tion

^

k

1

of the dete
ted nu
leon. The kineti


energy E

k;1

is given as

E

k;1

= E

1

�m; (6.134)

and thus,
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We insert Eq. (6.135) into Eq. (6.133), and end up with
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In arriving to Eq. (6.136) we have used Eq. (6.117) for J(k

2

;k

3

) and
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= d
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= d
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We de�ne a fun
tion �(p; q) as
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allowing the di�erential 
ross se
tion to be written in a similar fashion as the nonrela-

tivisti
 one in Eq. (6.27), that is

d�

dE

k;1

d

^

k

1

= (2�)

4

�(p; q)pk
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lab
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M

d

Z

d
^
p jU

0

(p;q)j

2

; (6.139)

where we have restored the summation over �nal spins and the averaging over initial spins

states. Nonrelativisti
ally the fun
tion �(p; q) redu
es to m

3

, and the di�erential 
ross

se
tion to the nonrelativisti
 expression in Eq. (6.27).
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Chapter 7

APPLICATION TO THE

PROTON-NEUTRON CHARGE

EXCHANGE REACTION

In this 
hapter we apply the 3D formulation derived in the last 
hapter for the Nd break-

up pro
ess to the (p,n) 
harge ex
hange rea
tion and show numeri
al results together with


omparisons to experiment. We 
onsider the pd break-up pro
ess, in whi
h a proton is

dire
ted towards an unpolarized deuteron target. The deuteron is then broken up into

a neutron and a proton, and �nally two protons and one neutron s
atter in dire
tions,

whi
h are 
onstrained by energy and momentum 
onservation. In the experiments we

are going to analyze, the neutron is dete
ted, while the two protons are not dete
ted.

Hen
e, in 
al
ulating the observables all possible dire
tions of the two protons are taken

into a

ount. In fa
t, energy and momentum 
onservations allow to sum over the relative

dire
tions
^
p between the two protons and not over the exa
t dire
tions of their motions.

We 
al
ulate the spin averaged di�erential 
ross se
tion and some spin observables, whi
h

are the neutron polarization P

0

, the analyzing power A

y

and the polarization transfer


oeÆ
ients D

ij

. The observables P

0

, A

y

and D

ij

are given in Eqs. (6.28)-(6.34), where the

integration over
^
p is suppressed. The spin averaged di�erential 
ross se
tion is given in

Eqs. (6.27) and (6.139), where in the latter relativisti
 kinemati
s is used. Corresponding

to ea
h observable, we use the following notation

d(p; n)pp 
orresponds to spin averaged di�erential 
ross se
tion (7.1)

d(p; ~n)pp 
orresponds to P

0

(7.2)

d(~p; n)pp 
orresponds to A

y

(7.3)

d(~p; ~n)pp 
orresponds to D

ij

: (7.4)
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Here the arrows mean that either the parti
le is polarized or the polarization of the parti
le

is measured. The 
al
ulations are performed using the NN potentials Bonn-B and AV18.

The numeri
al realization is des
ribed in Appendix G.

We show the results in the following order. Firstly we 
ompare our 3D 
al
ulations

with PW 
al
ulations of the �rst order term. Next we 
ompare with the PW 
al
ulations,

whi
h take the full break-up amplitude into a

ount. We re
all that we use the term "full

break-up amplitude" for the leading term plus the res
attering terms and the term "break-

up amplitude" for only the leading term. Thus, here one 
an see the e�e
ts of multiple

s
attering in the pro
ess. Last we 
ompare between 3D 
al
ulations with nonrelativisti


kinemati
s and the ones, whi
h use relativisti
 kinemati
s. This will show the e�e
ts of

relativity. Finally we 
ompare with data at various energies.

7.1 Comparison with Partial-Wave Cal
ulations

For a 3N s
attering using partial waves one has to 
he
k 
onvergen
e in two di�erent

pla
es. The �rst is the 2N-subsystem, for whi
h the NN T-matrix is 
al
ulated. The

se
ond is the 3N system itself. The NN T-matrix is 
al
ulated by in
luding 2N states up

to a NN total angular momentum j. Then using the NN T-matrix as input the Nd break-

up amplitude is 
al
ulated by in
luding 3N states up to a 3N total angular momentum

J . In this se
tion we 
ompare our 3D 
al
ulations to PW 
al
ulations [54, 55℄. The

3D 
al
ulations 
an be regarded as the ideal PW 
al
ulations, whi
h in
lude an in�nite

number of partial waves.

In Figs. 7.1-7.4 we show the 3D 
al
ulations and the PW 
al
ulations with j = 5

and J = 31=2 for the pd break-up pro
ess at E

lab

= 16 MeV and neutron labora-

tory s
attering angle �

lab

= 13

o

. The 
al
ulations are based on the NN potentials

Bonn-B and AV18. Figures 7.1(a) and 7.1(b) show the spin averaged di�erential 
ross

se
tion (abbreviated 
ross se
tion) and the polarization transfer 
oeÆ
ient D

nn

, res-

pe
tively, over the neutron outgoing energies E

n

. Figures 7.2(a) and 7.2(b) display the

analyzing power A

y

and the neutron polarization P

0

. Figures 7.3(a) and 7.3(b) show

the polarization transfer 
oeÆ
ients D

ll

and D

ss

. Figures 7.4(a) and 7.4(b) show the

polarization transfer 
oeÆ
ients D

sl

and D

ls

. At E

lab

= 16 MeV the 3D and the PW


al
ulations agree with ea
h other. There is an ex
eption for A

y

around E

n

= 3 MeV,

where the 
urves of the PW 
al
ulations os
illate over the smooth 
urves of the 3D 
al-


ulations. Now we go to a higher energy. In Figs. 7.5-7.8 the same set of observables is

shown for the same s
attering angle �

lab

= 13

o

but at a higher energy E

lab

= 197 MeV.

At this energy the 3D 
al
ulations disagree with the PW 
al
ulations, whi
h again take
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Figure 7.1: The 3D and the PW 
al
ulations (j = 5; J = 31=2) for (a) the spin averaged

di�erential 
ross se
tion and (b) the polarization transfer 
oeÆ
ient D

nn

in the pd break-

up pro
ess at E

lab

= 16 MeV and neutron laboratory s
attering angle �

lab

= 13

o

. The NN

potentials used are Bonn-B and AV18.



134 7 Appli
ation to the Proton-Neutron Charge Ex
hange Rea
tion

3D AV18

3D Bonn-B

PW AV18

PW Bonn-B

E

n

[MeV℄

A

y

1470

-0.0010

-0.0025

-0.0040

(a)

3D AV18

3D Bonn-B

PW AV18

PW Bonn-B

E

n

[MeV℄

P

0

1470

0.003

0.000

-0.003

(b)

Figure 7.2: Same as in Fig. 7.1, but for (a) the analyzing power A

y

and (b) the neutron

polarization P
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Figure 7.3: Same as in Fig. 7.1, but for the polarization transfer 
oeÆ
ients (a) D
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and

(b) D

ss

.
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Figure 7.4: Same as in Fig. 7.1, but for the polarization transfer 
oeÆ
ients (a) D

sl

and

(b) D

ls

.
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j = 5 and J = 31=2. In Fig. 7.5(a) the height of the 
ross se
tion peak in the PW 
al
ula-

tion for the Bonn-B is about 14% lower than that in the 3D 
al
ulation and about 8% for

the AV18. Figure 7.5(b) shows disagreements between the 3D and the PW 
al
ulations

for D

nn

, whi
h be
ome more visible as E

n

in
reases (E

n

> 100 MeV). And this behavior

is also seen for the other polarization transfer 
oeÆ
ients in Figs. 7.7 and 7.8 ex
ept for

D

ss

in Fig. 7.7(b). For A

y

and P

0

in Fig. 7.6 the disagreements o

ur mostly for E

n

between 70 and 130 MeV, that is around the middle of the E

n

-range for E

lab

= 197 MeV

and �

lab

= 13

o

. To give more examples in Figs. 7.9-7.12 we show again the same set of

observables at E

lab

= 197 MeV but for a larger s
attering angle �

lab

= 24

o

. Again we see

disagreements between the 3D and the PW 
al
ulations, whi
h take j = 5 and J = 31=2.

Here the 
ross se
tion peak in the PW 
al
ulation for the Bonn-B is about 2% higher than

the 
orresponding peak in the 3D 
al
ulation and about 4% for the AV18. Now at this

angle one also sees in Fig. 7.11(b) disagreements between the 3D and the PW 
al
ulations

for D

ss

. As at �

lab

= 13

o

the disagreements for the polarization transfer 
oeÆ
ients D

ij

o

ur mostly for the se
ond half of the E

n

-range, if one goes from lower E

n

to higher E

n

.

For A

y

and P

0

in Fig. 7.10 the disagreements o

ur near the middle and the maximum of

the E

n

-range. All these indi
ate that at E

lab

= 197 MeV the PW 
al
ulations with j = 5

and J = 31=2 have not 
onverged to the ideal PW 
al
ulations, whi
h in
lude all partial

waves, as represented by the 3D 
al
ulations.

In order to 
he
k the 
onverging pro
ess of the PW 
al
ulations at E

lab

= 197 MeV

we 
ompare to some PW 
al
ulations with in
reasing j and J , even up to j = 7. Figures

7.13 and 7.16 show su
h 
omparisons at �

lab

= 13

o

for the Bonn-B. Here we show

only for regions of E

n

, where the 
onverging pro
esses are better seen. For the E

n

-

region shown the PW 
al
ulation with j = 7 and J = 31=2 
an be 
onsidered to have

already 
onverged for D

ss

in Fig. 7.15(b). But for the other observables even with j = 7

and J = 31=2 the PW 
al
ulations do not 
onverge to the 3D 
al
ulations. Next we

see that in
reasing j improves the PW 
al
ulations to rea
h the 3D 
al
ulations faster

than in
reasing J . For A

y

(Fig. 7.14(a)) and the polarization transfer 
oeÆ
ients D

nn

(Fig. 7.13(b)), D

ll

(Fig. 7.15(a)), D

sl

(Fig. 7.16(a)) and D

ls

(Fig. 7.16(b)) the 
onvergen
es

of the PW 
al
ulations to the 3D 
al
ulations at E

lab

= 197 MeV may be a
hieved with

j = 9, but unfortunately this would not be the 
ase for the 
ross se
tion (Fig. 7.13(a))

and P

0

(Fig. 7.14(b)). For P

0

and moreover the 
ross se
tion the 
onverging pro
esses are

mu
h slower than those for A

y

, D

nn

, D

ll

, D

sl

and D

ls

. Let us take a look at the 
ross

se
tion in Fig. 7.13(a). With j = 7 and J = 31=2 the 
ross se
tion peak is raised to be

about 6% higher than the one resulting from the PW 
al
ulation with j = 5; J = 31=2,

but still it is about 9% lower than the 
ross se
tion peak from the 3D 
al
ulation. If by
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Figure 7.5: Same as in Fig. 7.1, but at E

lab

= 197 MeV and �

lab

= 13

o

.
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Figure 7.6: Same as in Fig. 7.5, but for (a) the analyzing power A

y

and (b) the neutron

polarization P
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Figure 7.7: Same as in Fig. 7.5, but for the polarization transfer 
oeÆ
ients (a) D

ll

and

(b) D

ss

.
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Figure 7.8: Same as in Fig. 7.5, but for the polarization transfer 
oeÆ
ients (a) D

sl

and

(b) D
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.
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Figure 7.9: Same as in Fig. 7.5, but at �

lab

= 24

o

.
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Figure 7.10: Same as in Fig. 7.6, but at �
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Figure 7.11: Same as in Fig. 7.7, but at �

lab

= 24

o

.



7.1 Comparison with Partial-Wave Cal
ulations 145

3D AV18

3D Bonn-B

PW AV18

PW Bonn-B

E

n

[MeV℄

D

s

l

180900

0.10

-0.02

-0.14

(a)

3D AV18

3D Bonn-B

PW AV18

PW Bonn-B

E

n

[MeV℄

D

l

s

180900

0.12

0.01

-0.10

(b)

Figure 7.12: Same as in Fig. 7.8, but at �
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.
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taking j = 9; J = 31=2 one would expe
t to have the 
ross se
tion peak further raised

by at most 6%, then it is still about 4% lower than the peak from the 3D 
al
ulation.

In fa
t one should take into a

ount that as one 
ontinuously in
reases the number of

partial waves the improvement is getting less and less, otherwise the 
al
ulation will not


onverge. Therefore, it is unlikely for the 
ross se
tion that by always in
reasing j > 7

the PW 
al
ulations will soon 
onverge to the 3D 
al
ulation. It is worthy to mention

that with j = 5 and J = 31=2 one has a
tually rea
hed the nowadays limits of the PW


al
ulations. Therefore, for energies around 200 MeV and higher it is not feasible to

perform a PW 
al
ulation, whi
h 
onverges to the 
orresponding 3D 
al
ulation.

Now we go to energies below 200 MeV to see where 3D 
al
ulations start to apre
iably

disagree with PW 
al
ulations. We 
hoose the PW 
al
ulations, whi
h take j = 7; J =

31=2 and are based on the NN potential Bonn-B. From the investigation for E

lab

= 197

we know that for the 
ross se
tion the PW 
al
ulation 
onverges slowliest than for other

observables. Therefore, we shall look at the disagreement for the 
ross se
tion peak.

Nevertheless, we will show all the investigated observables. In Figs. 7.17-7.20 we display

the 3D and the PW 
al
ulations for E

lab

= 65 MeV and �

lab

= 13

o

. At this energy one 
an

hardly see disagreements between the 3D and the PW 
al
ulations. There is an ex
eption

for A

y

in Fig. 7.18(a) around E

n

= 10 MeV, to whi
h a similar disagreement is also seen at

E

lab

= 16 MeV around E

n

= 3 MeV (see Fig. 7.2(a)). At E

lab

= 65 MeV the height of the


ross se
tion peak in Fig. 7.17(a) from the PW 
al
ulation is about 0.5% lower than the

one from the 3D 
al
ulation. In Figs. 7.21-7.24 we show the 
al
ulations for E

lab

= 100

MeV and �

lab

= 13

o

. For the polarization transfer 
oeÆ
ients D

ij

one 
an hardly see

disagreements between the 3D and the PW 
al
ulations. For A

y

in Fig. 7.22(a) one sees

around E

n

= 20 MeV similar disagreements to the ones o

uring at E

lab

= 65 MeV and

E

n

= 10 MeV (see Fig. 7.18(a)). At E

lab

= 100 MeV the disagreement for the 
ross

se
tion peak in Fig. 7.21(a) between the two 
al
ulations is about 1.7%, thus, it is more

than three times larger than the disagreement at E

lab

= 65 MeV. Now if E

lab

is getting

higher than 100 MeV the disagreement for the 
ross se
tion peak will qui
kly in
rease.

We 
on
lude that for E

lab

= 100 MeV and lower PW 
al
ulations with j = 7; J = 31=2


an be used to des
ribe Nd break-up pro
ess reasonably well, but for E

lab

> 100 MeV the


al
ulations are inadequate. But with j = 7; J = 31=2 this means that one has to pay

mu
h e�ort to perform the 
al
ulations up to the limits. Thus, a

ording to this insight

for E

lab

> 100 MeV PW 
al
ulations 
annot be used to well des
ribe the Nd break-up

pro
ess.
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Figure 7.13: Convergen
e tests of the PW 
al
ulations for (a) the spin averaged 
ross

se
tion and (b) the polarization transfer 
oeÆ
ient D

nn

in the pd break-up pro
ess at

E

lab

= 197 MeV and �

lab

= 13

o

. The NN potential used is Bonn-B.
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Figure 7.14: Same as in Fig. 7.13, but for (a) the analyzing power A

y

and (b) the neutron

polarization P
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Figure 7.15: Same as in Fig 7.13, but for the polarization transfer 
oeÆ
ients (a) D
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and

(b) D

ss

.



150 7 Appli
ation to the Proton-Neutron Charge Ex
hange Rea
tion

PW: j=5 J=25/2

PW: j=5 J=31/2

PW: j=7 J=25/2

PW: j=7 J=31/2

3D

E

n

[MeV℄

D

s

l

19013070

0.44

0.22

0.00

(a)

PW: j=5 J=25/2

PW: j=5 J=31/2

PW: j=7 J=25/2

PW: j=7 J=31/2

3D

E

n

[MeV℄

D

l

s

19013070

0.42

0.21

0.00

(b)

Figure 7.16: Same as in Fig 7.13, but for the polarization transfer 
oeÆ
ients (a) D

sl

and

(b) D

ls
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Figure 7.17: The 3D and PW 
al
ulations for (a) the spin averaged di�erential 
ross

se
tion and (b) the polarization transfer 
oeÆ
ient D

nn

in the pd break-up pro
ess at

E

lab

= 65 MeV and �

lab

= 13

o

. The NN potential used is Bonn-B. The PW 
al
ulations

take j = 7; J = 31=2.
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Figure 7.18: Same as in Fig. 7.17, but for (a) the analyzing power A

y

and (b) the neutron

polarization P
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Figure 7.19: Same as in Fig. 7.17, but for the polarization transfer 
oeÆ
ients (a) D

ll

and

(b) D

ss

.
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Figure 7.20: Same as in Fig. 7.17, but for the polarization transfer 
oeÆ
ients (a) D

sl

and (b) D

ls

.
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Figure 7.21: Same as in Fig. 7.17, but at E

lab

= 100 MeV and �

lab

= 13

o

.
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Figure 7.22: Same as in Fig. 7.21, but for (a) the analyzing power A
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and (b) the neutron

polarization P
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Figure 7.23: Same as in Fig. 7.21, but for the polarization transfer 
oeÆ
ients (a) D
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and

(b) D
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.
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Figure 7.24: Same as in Fig. 7.21, but for the polarization transfer 
oeÆ
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and (b) D
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.
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7.2 Contributions from the Res
attering Terms

In the present work we in
lude only the leading term of the full Faddeev Nd break-up

amplitude and leave out the res
attering terms. It 
an be expe
ted that with in
reasing

energy the importan
e of the res
attering terms will have de
reased. This 
an, however,

depend on the kinemati
al regime. Now unfortunately a 3D full Faddeev 
al
ulation does

not yet exist to 
ompare with. Thus, we are for
ed to 
ompare with existing PW full

Faddeev 
al
ulations, whi
h a
tually 
an be expe
ted to be reliable only below E

lab

' 100

MeV as infered from our 
omparisons in the last se
tion in �rst order in the NN T-matrix.

Nevertheless the 
omparisons with the PW full Faddeev 
al
ulations at some higher

energies will provide some hints about the importan
e of res
attering e�e
ts. This insight

will then be some orientation about the usefullness of 
omparing our 3D 
al
ulations in

�rst order in the NN T-matrix with data. Sin
e now we shall also show experimental

data, it is ne
essary to dis
uss the NN potentials Bonn-B and AV18, before we 
ontinue

to dis
uss multiple s
attering e�e
ts. As already mentioned in Chapter 4 the two NN

potentials are de�ned below 350 MeV NN laboratory energy. This 
orresponds to the

NN 
.m. energy of 175 MeV. In the Nd break-up pro
ess and in our approximations

of keeping the NN T-matrix in �rst order only the energy for the NN T-matrix is �xed

in terms of the �nal nu
leon's laboratory momenta and the proje
tile's energy. Thus,

we 
an determine the maximum NN 
.m. energy o

uring in the 2N subsystem. At

E

lab

' 200 MeV the maximum NN 
.m. energy o

uring in the 2N-subsystem is about

133.4 MeV (refer to Se
tion G.4). Therefore, for the Nd break-up pro
ess at E

lab

' 200

MeV the NN T-matrix elements obtained from the two NN potentials are reasonably


orre
t. It will be interesting to see the e�e
ts from the o�-shell part of the NN T-matri
es,

whi
h are somewhat di�erent between the two NN potential as shown in Chapter 4. In

a more 
omplete dynami
al pi
ture one would have to add also a proper 3N for
e. Thus,


ontributions from the o�-shell behavior of the NN T-matrix and the 3N for
e would

balan
e ea
h other and the results should be invariant under ex
hange of the models [56℄.

Here in our restri
ted dynami
al input we 
an only get insight, whether the NN potentials

Bonn-B and AV18 yield essentially the same results or di�erent ones. For E

lab

higher than

263 MeV the maximum NN 
.m. energy is higher than 175 MeV, thus, beyond the energy

range, where the NN potentials Bonn-B and AV18 are de�ned. Therefore, this 
an be one

sour
e of de�
ien
ies in des
ribing the Nd break-up pro
ess at E

lab

> 263 MeV.

In Figs. 7.25-7.40 we show the 3D 
al
ulations, the PW full Faddeev 
al
ulations [54℄

and experimental data [18℄ at E

lab

= 197 MeV and various s
attering angles �

lab

for the

investigated observables in the pd break-up pro
ess. The PW full Faddeev 
al
ulations



160 7 Appli
ation to the Proton-Neutron Charge Ex
hange Rea
tion

take j = 5; J = 31=2 for the NN potential AV18 and j = 4; J = 31=2 for the NN potential

Bonn-B. In the last se
tion we have seen that at E

lab

' 100 MeV one has already rea
hed

the limits of the PW 
al
ulations to get 
onverged results. In that investigation the


ase was simpler, sin
e one took only the leading term of the full Faddeev Nd break-up

amplitude. Thus, one 
ould in
lude partial waves up to j = 7; J = 31=2. Now the 
ase

is more 
omplex, sin
e the res
attering terms are also in
luded. Hen
e, we are provided

with the PW 
al
ulations only with a lower number of partial waves. Nevertheless, it is

suÆ
ient to qualitatively see multiple s
attering e�e
ts. Let us take a look at Figs. 7.25-

7.28, whi
h show the observables at �

lab

= 13

o

. Figure 7.25(a) displays the 
ross se
tion.

The sharp peak in the PW 
al
ulations 
lose to the highest neutron energy E

n

is due to

the �nal state intera
tion (FSI) between the two protons, whi
h are not dete
ted. The

FSI takes pla
e if the two protons are moving together in the same dire
tion. Thus, the

relative momentum between the two protons is zero and this happens if the neutron takes

most of the energy. The FSI is not taken into a

ount in the 3D 
al
ulation and the

peak is not dete
ted in the experiment due to the E

n

-resolution. Therefore, here we 
an

put the FSI aside. The �gure shows that the in
lusion of the res
attering terms lowers

the theoreti
al predi
tions for the 
ross se
tion. Now among the spin observables the

analyzing power A

y

turns out to be suitable to see res
attering e�e
ts in the pd break-up

pro
ess. The in
lusion of the res
attering terms for A

y

in Fig. 7.26(a) greatly improves

the theoreti
al predi
tions to mat
h the experimental data better. The e�e
t is as if it

tilts A

y

by raising its one end at lower E

n

. For the other spin observables the in
lusion

of the res
attering terms leads to smaller e�e
ts than for A

y

. In some 
ases like, for

example, for D

ll

in Fig. 7.27(a) at lower E

n

it improves the theoreti
al predi
tions. But

in some other 
ases like for D

ss

in Fig. 7.27(b) it 
auses worse agreements with the data.

Next in Figs. 7.29-7.32 we show the same set of observables at a di�erent s
attering angle

�

lab

= 24

o

. Again for the 
ross se
tion in Fig. 7.29(a) we see the res
attering e�e
ts

as lowering the theoreti
al 
ross se
tion peak. Now the theoreti
al 
ross se
tion peaks

overlap with the data. For A

y

in Fig. 7.30(a) we also see the similar res
attering e�e
ts

as at �

lab

= 13

o

, whi
h is like a tilt of A

y

by raising its one end at lower E

n

. In addition

we also see at E

n

towards its maximum that the in
lusion of the res
attering terms drops

Ay. For other observables we see some various 
hanges 
aused by the res
attering terms.

At other s
attering angles �

lab

= 37

o

in Figs. 7.33-7.36 and �

lab

= 48

o

in Figs. 7.37-7.40 we

see a similar situation for the investigated observables. At this point we have to 
on
lude

that at E

lab

' 200 MeV the res
attering terms still give mu
h 
ontributions to the full pd

break-up amplitude and hen
e 
annot be negle
ted.
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Figure 7.25: The 3D and the PW 
al
ulations for (a) the spin averaged di�erential 
ross

se
tion and (b) the polarization transfer 
oeÆ
ient D

nn

in the pd break-up pro
ess at

E

lab

= 197 MeV and �

lab

= 13

o

. The NN potentials used are Bonn-B and AV18. The 3D


al
ulations take the pd break-up amplitude, while the PW 
al
ulations take the full pd

break-up amplitude. The experimental data are taken from Ref. [18℄. The sharp peak in

the PW 
al
ulations for the 
ross se
tion 
lose to the highest neutron outgoing energy E

n

is due to the �nal state intera
tion between the two proton, whi
h are not dete
ted. See

text for more details.
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Figure 7.26: Same as in Fig. 7.25, but for (a) the analyzing power A

y

and (b) the neutron

polarization P
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.
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Figure 7.27: Same as in Fig. 7.25, but for the polarization transfer 
oeÆ
ients (a) D

ll

and

(b) D

ss

.
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Figure 7.28: Same as in Fig. 7.25, but for the polarization transfer 
oeÆ
ients (a) D

sl

and (b) D

ls

.
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Figure 7.29: Same as in Fig. 7.25, but at �

lab

= 24

o

.
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Figure 7.30: Same as in Fig. 7.26, but at �

lab

= 24

o

.
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Figure 7.31: Same as in Fig. 7.27, but at �

lab

= 24

o

.
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Figure 7.32: Same as in Fig. 7.28, but at �

lab

= 24

o

.



7.2 Contributions from the Res
attering Terms 169

3D AV18

3D Bonn-B

PW full AV18

PW full Bonn-B

exp.

E

n

[MeV℄

d

2

�

d

E

n

d

�

[

m

b

/

(

M

e

V

.

s

r

)

℄

1609020

0.22

0.10

-0.02

(a)

3D AV18

3D Bonn-B

PW full AV18

PW full Bonn-B

exp.

E

n

[MeV℄

D

n

n

15011070

0.60

0.15

-0.30

(b)

Figure 7.33: Same as in Fig. 7.25, but at �

lab

= 37

o

.
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Figure 7.34: Same as in Fig. 7.26, but at �

lab

= 37

o

.
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Figure 7.35: Same as in Fig. 7.27, but at �

lab

= 37

o

.



172 7 Appli
ation to the Proton-Neutron Charge Ex
hange Rea
tion

3D AV18

3D Bonn-B

PW full AV18

PW full Bonn-B

exp.

E

n

[MeV℄

D

s

l

15011580

0.2

-0.2

-0.6

(a)

3D AV18

3D Bonn-B

PW full AV18

PW full Bonn-B

exp.

E

n

[MeV℄

D

l

s

15011580

0.10

-0.25

-0.60

(b)

Figure 7.36: Same as in Fig. 7.28, but at �

lab

= 37

o

.
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Figure 7.37: Same as in Fig. 7.25, but at �

lab

= 48

o

.
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Figure 7.38: Same as in Fig. 7.26, but at �

lab

= 48
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.
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Figure 7.39: Same as in Fig. 7.27, but at �

lab
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.
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Figure 7.40: Same as in Fig. 7.28, but at �

lab

= 48

o

.



7.3 E�e
ts of Relativity 177

Now we go to higher energies than 200 MeV. There are experimental data at E

lab

= 346

MeV [19℄. Unfortunately there exists no full Faddeev 
al
ulation for this energy. Hen
e,

we 
an 
ompare only with data. In Figs. 7.41-7.44 we show the 
ross se
tion and the

spin observables in the pd break-up pro
ess at E

lab

= 346 MeV and �

lab

= 22

o

. The


al
ulations agree only qualitatively with the data. In Fig. 7.41(a) the theoreti
al peak

of the 
ross se
tion for the NN potential Bonn-B is higher than the data, but on the


ontrary for the NN potential AV18 it is lower than the data. We re
all the dis
ussion for

E

lab

= 197 MeV that the multiple s
attering lowers the 
ross se
tion. If this pro
ess is not

neglibgible at E

lab

= 346 MeV that means that by in
luding the res
attering terms the

theoreti
al predi
tion based on the NN potential Bonn-B may be improved but the one

based on the NN potential AV18 is getting worse. Now regardless the height of the peak,

the position of the theoreti
al peak is shifted to a higher neutron energy E

n

, 
ompared

to the data. This is a
tually already seen at E

lab

= 197 MeV and it 
annot be �xed

by in
luding the res
attering terms. Therefore, other pro
esses are responsible to shift

ba
k the 
ross se
tion peak along E

n

to the right position. These dynami
al ingredients

together with the multiple s
attering may also determine the height of the peak or the

whole parts of the 
ross se
tion. For A

y

in Fig. 7.42(a) the res
attering terms seem to be

required to tilt the theoreti
al predi
tion to be 
loser to the data, if we re
all the similar

improvement of the theoreti
al predi
tion at E

lab

= 197 MeV by in
luding the res
attering

terms. Thus, at this energy E

lab

= 346 MeV one 
an argue that the res
attering terms

are still important to be in
luded.

Lastly we go on to E

lab

' 500 MeV. We 
ompare with experimental data at E

lab

= 495

MeV [57℄. Again at this energy there is no full Faddeev 
al
ulation. In Figs. 7.45-7.48

we show the observables at E

lab

= 495 MeV and �

lab

= 18

o

. We see in Fig. 7.45(a)

that the 
al
ulations overestimate the 
ross se
tion at the peak and that the theoreti
al

peak is shifted to a higher neutron energy E

n

, 
ompared to the data. In Fig. 7.46(a) the

theoreti
al predi
tions for the analyzing power A

y

are somewhat below the experimental

data but not at E

n


lose to its maximum. Similar as in the 
ase at E

lab

= 346 MeV one


an 
onje
ture that at E

lab

= 495 MeV the res
attering terms are ne
essary to be taken

into a

ount.

7.3 E�e
ts of Relativity

We saw in the last se
tion that 
ompared to data the theoreti
al peaks of the 
ross se
tions

are shifted to higher neutron energies in 
omparisons with the data. The shifts are getting

larger as the energy E

lab

in
reases and 
annot be �xed by in
luding the res
attering terms
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Figure 7.41: Same as in Fig. 7.25, but with no PW full Faddeev 
al
ulation, at E

lab

= 346

MeV, �

lab

= 22

o

. The experimental data are taken from Ref. [19℄.



7.3 E�e
ts of Relativity 179

3D AV18

3D Bonn-B

exp.

E

n

[MeV℄

A

y

320270220

0.20

0.11

0.02

(a)

3D AV18

3D Bonn-B

exp.

E

n

[MeV℄

P

0

320270220

0.30

0.17

0.04

(b)

Figure 7.42: Same as in Fig. 7.41, but for (a) the analyzing power A

y

and (b) the neutron

polarization P

0

.



180 7 Appli
ation to the Proton-Neutron Charge Ex
hange Rea
tion

3D AV18

3D Bonn-B

exp.

E

n

[MeV℄

D

l

l

320270220

0.0

-0.4

-0.8

(a)

3D AV18

3D Bonn-B

exp.

E

n

[MeV℄

D

s

s

320270220

0.20

-0.25

-0.70

(b)

Figure 7.43: Same as in Fig. 7.41, but for the polarization transfer 
oeÆ
ients (a) D

ll

and

(b) D

ss

.
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Figure 7.44: Same as in Fig. 7.41, but for the polarization transfer 
oeÆ
ients (a) D

sl

and (b) D
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.
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Figure 7.45: Same as in Fig. 7.41, but at E

lab

= 495 MeV and �

lab

= 18

o

. The experimental

data are taken from Ref. [57℄.
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Figure 7.46: Same as in Fig. 7.45, but for (a) the analyzing power A

y

and (b) the poal-

rization P
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.
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Figure 7.47: Same as in Fig. 7.45, but for the polarization transfer 
oeÆ
ients (a) D
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and

(b) D
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Figure 7.48: Same as in Fig. 7.45, but for the polarization transfer 
oeÆ
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and (b) D
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of the full Faddeev Nd break-up amplitude. Therefore, another pro
ess (or pro
esses) must

also be taken into a

ount to bring the theoreti
al peak to the right position. The pro
ess

should be
ome more important as the energy E

lab

in
reases. Sin
e we are observing the pd

break-up pro
ess at higher energies, we 
onsider to in
lude relativity in our 
al
ulations.

The formulation derived in Chapter 6 for the 
ross se
tion is fully relativisti
, but in

pra
tise there we were still for
ed to approximate the relativisti
 S-matrix. We restri
ted

ourselves just to relativisti
 kinemati
s. This in
ludes, however, not only the 
hanges of

the phase-spa
e fa
tor but also the S-matrix elements. The latter is due to the relativisti


momenta, whi
h enter as arguments of the NN T-matrix and the deuteron wave fun
tion


omponents. We have to leave further steps for future investigations. These further steps

are boosting the NN T-matrix [58℄ and Wigner's rotation [59℄, whi
h are still under debate

in the literature.

Let us more 
losely look at the position of the 
ross se
tion peak. In the in
lusive

Nd break-up pro
ess without 
onsideration of the FSI the 
ross se
tion peak o

urs at a

point along the energy E

1

of the dete
ted nu
leon, where after the break-up one of the two

undete
ted nu
leons is at rest. Thus, in the investigated pd break-up pro
ess the 
ross

se
tion peak o

urs at a point along E

n

, where one of the two protons is at rest after the

break-up. Then in the �nal state two nu
leons 
arry most of the energy of the pro
ess.

The pro
ess then happens as if one of the three nu
leons a
ts just as a spe
tator, while

the other two 
ollide upon ea
h other. The pro
ess is 
alled the quasi-free s
attering

(QFS) and the 
ross se
ton peak under dis
ussion the QFS-peak. The position of the

QFS-peak 
an be determined by means of the energy and the momentum 
onservations,

while setting the �nal momentum of one of the two undete
ted nu
leons to be zero. Using

nonrelativisti
 kinemati
s we obtain the QFS-peak position E

QFS

1

as

E

QFS

1

=

1

2

E

lab


os

2

�

lab

+

1

2

E

d

+

1

2

q

E

lab


os

2

�

lab

(E

lab


os

2

�

lab

+ 2E

d

); (7.5)

and using relativisti
 kinemati
s we obtain the QFS-peak position E

QFS;rel

1

as

E

QFS;rel

1

=

�B �

p

B

2

� 4AC

2A

; (7.6)

with

A = 4((2m+ E

lab

)E

lab


os

2

�

lab

� (2m + E

lab

+ E

d

)

2

) (7.7)

B = 4(2(2m+ E

lab

)mE

lab


os

2

�

lab

+ E

d

(2m+ E

lab

+ E

d

)(2m + 2E

lab

+ E

d

)) (7.8)

C = �E

2

d

(2m+ 2E

lab

+ E

d

)

2

: (7.9)

Note that in Eqs. (7.5), (7.7)-(7.9) E

lab

is the kineti
 energy of the proje
tile and not its
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total energy.

1

In Table 7.1 we show E

QFS

1

and E

QFS;rel

1

at some energies and s
attering

angles, at whi
h data for the pd break-up pro
ess exist and have been shown in the

previous se
tion. We see in the table that E

QFS;rel

1

is less than E

QFS

1

. Thus, relativity

brings the QFS-peak position to a lower energy of the dete
ted nu
leon, 
ompared to the

one obtained from a nonrelativisti
 
al
ulation. Later we shall 
ompare the QFS-peak

positions shown in Table 7.1 with data as we also 
he
k other relativisti
 e�e
ts in the pd

break-up pro
ess. In the table we see at E

lab

= 197 MeV that the di�eren
e between E

QFS

1

and E

QFS;rel

1

is getting larger as the s
attering angle �

lab

in
reases. It is also indi
ated in

the table that the di�eren
e between E

QFS

1

and E

QFS;rel

1

is getting larger as the proje
tile

energy E

lab

in
reases, whi
h is something that one would expe
t from a relativisti
 e�e
t.

Table 7.1: The QFS-peak positions E

QFS

1

and E

QFS;rel

1

for the pd break-up pro
ess at

some energies and s
attering angles.

E

lab

[MeV℄ �

lab

E

QFS

1

[MeV℄ E

QFS;rel

1

[MeV℄

197 13

o

184.8 183.8

197 24

o

162.2 159.3

197 37

o

123.4 118.7

197 48

o

86.0 81.0

346 22

o

295.2 287.6

495 18

o

445.5 434.4

1

Here we sket
h out how to arrive at Eqs. (7.5) and (7.6). To obtain E

QFS

1

in Eq. (7.5) we begin with

the energy and the momentum 
onservations for the Nd break-up pro
ess, whi
h are given as:

E

lab

+E

d

= E

1

+E

2

+E

3

(7.10)

k

lab

= k

1

+ k

2

+ k

3

: (7.11)

Next we 
hoose in the �nal state that nu
leon 3 is at rest, thus, k

3

is equal to zero. Under this 
ondition

Eqs. (7.10) and (7.11) lead to a quadrati
 equation in

p

E

1

given as

2E

1

+E

lab

� 2

p

E

1

E

lab


os �

lab

�E

lab

�E

d

= 0: (7.12)

The solution of Eq. (7.12) leads to E

QFS

1

as given in Eq. (7.5). Now to obtain E

QFS;rel

1

in Eq. (7.6) we

start with the same momentum 
onservation given in Eq. (7.11) and the relativisti
 energy 
onservation

for the Nd break-up pro
ess, whi
h is given as

E

lab

+m

d

� 2m = E

1

+E

2

+E

3

: (7.13)

Next we set k

3

to be zero, and then Eqs. (7.11) and (7.13) lead to a quadrati
 equation, of whi
h one of

the solutions is E

QFS;rel

1

as given in Eq. (7.6).
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Now we 
ontinue to 
ompare between the 
al
ulations with and without the relativisti



orre
tion as well as experimental data for the pd break-up pro
ess at various energies

and s
attering angles. In Figs. 7.49-7.64 we show the 
omparisons at E

lab

= 197 MeV.

The nonrelativisti
 and the relativisti
 QFS-peaks in Figs. 7.49(a), 7.53(a), 7.57(a) and

7.61(a) o

ur at E

QFS

1

and E

QFS;rel

1

, respe
tively, as given in Table 7.1. En
ouragingly

the relativisti
 
orre
tion brings the QFS-peaks at �

lab

= 24

o

in Fig. 7.53(a), at �

lab

= 37

o

in Fig. 7.57(a) and at �

lab

= 48

o

in Fig. 7.61(a) to the 
orre
t positions along the neutron

energy E

n

, where also the data o

ur. But it also raises the heights of the peaks to be

higher than the data. At �

lab

= 13

o

in Fig. 7.49(a) the relativisti
 
orre
tion shifts the

QFS-peaks in the same dire
tion as at other �

lab

's. The result is that now the peaks o

ur

at lower E

n

, 
ompared to the data. To understand this let us return to Fig. 7.25(a),

whi
h shows the PW full Faddeev 
al
ulations for the 
ross se
tion at E

lab

= 197 MeV

and �

lab

= 13

o

. In Fig. 7.25(a) we see that the FSI is very important at this energy and

s
attering angle as indi
ated by the very high peaks in the PW full Faddeev 
al
ulations at

the maximum of E

n

. In addition the FSI-peak o

urs very 
lose to the QFS-peak. Thus,

at E

lab

= 197 MeV, �

lab

= 13

o

the height and the position of the 
ross se
tion peak is also

determined strongly by the FSI. Sin
e we do not in
lude the FSI, we obtain the results

as shown in Fig. 7.49(a) that the 
al
ulations predi
t the 
ross se
tion peaks o

uring

at a shifted position to lower E

n

. For the spin observables the relativisti
 
orre
tion

leads to various e�e
ts. In some 
ases the e�e
ts are getting larger as E

n

in
reases

towards its maximum. This is seen, for example, for A

y

in Figs. 7.54(a) (�

lab

= 24

o

),

7.58(a) (�

lab

= 37

o

), 7.62(a) (�

lab

= 48

o

) and for D

ss

in Figs. 7.55(b) (�

lab

= 24

o

), 7.59(b)

(�

lab

= 37

o

), 7.63(b) (�

lab

= 48

o

). There at E

n

towards its maximum the relativisti



orre
tion lowers the theoreti
al predi
tions for A

y

and in
reases the ones for D

ss

. In any


ase we 
an state that at E

lab

= 197 MeV the relativisti
 
orre
tion is 
learly required to


orre
tly pla
e the 
ross se
tion peak along the neutron energy.

Similar 
omparisons are shown in Figs. 7.65-7.68 for E

lab

= 346 MeV, �

lab

= 22

o

and in Figs. 7.69-7.72 for E

lab

= 495 MeV, �

lab

= 18

o

. The nonrelativisti
 and the rel-

ativisti
 QFS-peaks in Figs. 7.65(a) and 7.69(a) o

ur at E

QFS

1

and E

QFS;rel

1

as given

in Table 7.1. As at E

lab

= 197 MeV the relativisti
 
orre
tion brings the QFS-peaks

in Figs. 7.65(a) and 7.69(a) to where the data o

ur along E

n

. It also in
reases the

heights of the peaks. We would like to point out that at E

lab

= 346 MeV the relativisti


QFS-peak in Fig. 7.65(a) is surprisingly shifted to the left, 
ompared to the data.

The origin of this little dis
repan
y between the 
al
ulations and the data 
an be tra
ed

ba
k to the experiment. In the experiment there is an un
ertainty of the energy, at whi
h

the pd break-up pro
ess exa
tly o

urs. For example, due to the thi
kness of the target
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Figure 7.49: The 3D 
al
ulations for (a) the spin averaged di�erential 
ross se
tion and

(b) the polarization transfer 
oeÆ
ient D

nn

in the pd break-up pro
ess at E

lab

= 197 MeV

and �

lab

= 13

o

. The NN potentials used are Bonn-B and AV18. The word \rel" in the


urves' labels means that the 
orresponding 
al
ulations in
lude relativisti
 kinemati
.

The experimental data are taken from Ref. [18℄.
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Figure 7.50: Same as in Fig. 7.49, but for (a) the analyzing power A

y

and (b) the neutron

polarization P

0

.
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Figure 7.51: Same as in Fig. 7.49, but for the polarization transfer 
oeÆ
ients (a) D
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and

(b) D
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.
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Figure 7.52: Same as in Fig. 7.49, but for the polarization transfer 
oeÆ
ients (a) D

sl

and (b) D
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.
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Figure 7.53: Same as in Fig. 7.49, but at �

lab

= 24

o

.



194 7 Appli
ation to the Proton-Neutron Charge Ex
hange Rea
tion

3D AV18

3D Bonn-B

3D rel AV18

3D rel Bonn-B

exp.

E

n

[MeV℄

A

y

180145110

0.24

0.07

-0.10

(a)

3D AV18

3D Bonn-B

3D rel AV18

3D rel Bonn-B

exp.

E

n

[MeV℄

P

0

180145110

0.35

0.20

0.05

(b)

Figure 7.54: Same as in Fig. 7.50, but at �

lab

= 24
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.
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Figure 7.55: Same as in Fig. 7.51, but at �

lab

= 24
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.
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Figure 7.56: Same as in Fig. 7.52, but at �
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Figure 7.57: Same as in Fig. 7.49, but at �
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= 37
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.
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Figure 7.58: Same as in Fig. 7.50, but at �

lab

= 37
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Figure 7.59: Same as in Fig. 7.51, but at �

lab

= 37
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.
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Figure 7.60: Same as in Fig. 7.52, but at �

lab

= 37

o

.
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Figure 7.61: Same as in Fig. 7.49, but at �

lab

= 48

o

.
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Figure 7.62: Same as in Fig. 7.50, but at �

lab

= 48
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.
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Figure 7.63: Same as in Fig. 7.51, but at �

lab

= 48

o

.
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the proton may have lost some of its energy before it hits and breaks the deuteron apart

[54℄. In this 
ase the pro
ess o

urs at some energy, whi
h deviates from the 
onsidered

one. At E

lab

= 346 and 495 MeV one sees more 
learly than at E

lab

= 197 MeV that

for the spin observables the relativisti
 e�et
s be
ome larger as E

n

in
reases and mostly

at E

n

towards its maximum. For A

y

at E

lab

= 346 MeV in Fig. 7.66(a) we see a similar

tilting e�e
t as the one seen in the last se
tion, when we investigated the res
attering

pro
ess. Clearly at higher energies relativity is getting more important. Therefore, the

relativisti
 
orre
tion leads to more 
hanges as the energy in
reases.

Now we tentatively dis
uss the relativisti
 
orre
tion in 
onne
tion with the

in
lusion of the res
attering terms of the full Faddeev Nd break-up amplitude. In the last

se
tion it was shown that the multiple s
attering de
reases the pd break-up 
ross se
tion,

whi
h is espe
ially visible around the peak. Compared to the data the theoreti
al peak

is, however, shifted to a higher neutron energy E

n

. Here in this se
tion we see that the

relativisti
 
orre
tion shifts the theoreti
al peak ba
k to the 
orre
t position along E

n

,

but in
reases its height. Therefore, one 
ould 
onje
ture that in
luding both,

the res
attering terms and the relativisti
 
orre
tion, will move the theoreti
al

predi
tion for the 
ross se
tion peak towards the data. For the analyzing power A

y

the

multiple s
attering improves the theoreti
al predi
tion by the e�e
t like tilting A

y

. Thus,

it lifts A

y

at lower E

n

and drops A

y

at E

n


lose to its maximum. An almost similar e�e
t

is again 
aused by the relativisti
 
orre
tion, whi
h 
an best be observed in Fig. 7.66(a).

Therefore, in
luding the res
attering terms and the relativisti
 
orre
tion will very likely

improve the theoreti
al predi
tion. Thus, for the higher energies we 
onsidered, say from

' 200 MeV to 500 MeV, we 
onje
ture that both multiple s
attering and relativity must

be taken into a

ount.

After the observations at higher energies we go to energies lower than E

lab

' 200

MeV and seek for relativisti
 e�e
ts. In Figs. 7.73-7.76 we show the 
ross se
tion and

the spin observables at E

lab

= 16 MeV, �

lab

= 13

o

and in Figs. 7.77-7.80 at E

lab

= 65

MeV, �

lab

= 13

o

. At E

lab

= 16 MeV we see for the 
ross se
tion in Fig. 7.73(a) only small

relativisti
 e�e
ts. The 
ross se
tions obtained from the relativisti
 
al
ulations are larger

than the ones from the nonrelativisti
 
al
ulations, that is about 1.4% at the peak around

E

n

= 6 MeV. For the spin observables relativisti
 e�e
ts are hardly seen at E

lab

= 16

MeV. At E

lab

= 65 MeV in Fig. 7.77(a) the 
ross se
tion peaks around E

n

= 58 MeV

arising from the relativisti
 
al
ulations are already 
learly seen to be shifted to lower

E

n

, 
ompared to the ones from the nonrelativisti
 
al
ulations. The heights of the 
ross

se
tion peaks from the relativisti
 
al
ulations are about 6% higher than those from the

nonrelativisti
 
al
ulations. At E

lab

= 65 MeV relativisti
 e�e
ts for the spin observables
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Figure 7.65: Same as in Fig. 7.49, but at E

lab

= 346 MeV and �

lab

= 22

o

. The experimental

data are taken from Ref. [19℄.
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Figure 7.67: Same as in Fig. 7.65, but for the polarization transfer 
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Figure 7.69: Same as in Fig. 7.65, but at E

lab

= 495 MeV and �
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= 18
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. The experimental

data are taken from Ref. [57℄.
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Figure 7.70: Same as in Fig. 7.69, but for (a) the analyzing power A
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polarization P
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Figure 7.71: Same as in Fig. 7.69, but for the polarization transfer 
oeÆ
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and

(b) D
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.
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Figure 7.72: Same as in Fig. 7.69, but for the polarization transfer 
oeÆ
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an be seen, for example, in Fig. 7.78(a) for A

y

. The e�e
ts are about 4% around E

n

= 42

MeV. Therefore, at E

lab

= 65 MeV the relativity has already begun to be important.
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Figure 7.73: Same as in Fig. 7.69, but with no experimental data, at E
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Figure 7.74: Same as in Fig. 7.73, but for (a) the analyzing power A
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polarization P
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Figure 7.75: Same as in Fig. 7.73, but for the polarization transfer 
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ients (a) D
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and

(b) D
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.
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Figure 7.76: Same as in Fig. 7.73, but for the polarization transfer 
oeÆ
ients (a) D

sl

and (b) D
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.



7.3 E�e
ts of Relativity 219

3D AV18

3D Bonn-B

3D rel AV18

3D rel Bonn-B

E

n

[MeV℄

d

2

�

d

E

n

d

�

[

m

b

/

(

M

e

V

.

s

r

)

℄

64320

4

2

0

(a)

3D AV18

3D Bonn-B

3D rel AV18

3D rel Bonn-B

E

n

[MeV℄

D

n

n

64320

0.30

-0.05

-0.40

(b)

Figure 7.77: Same as in Fig. 7.73, but at E

lab

= 65 MeV and �

lab

= 13

o

.
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Figure 7.78: Same as in Fig. 7.74, but at E

lab

= 65 MeV and �
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= 13

o

.
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Figure 7.79: Same as in Fig. 7.75, but at E
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= 65 MeV and �
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.
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Chapter 8

SUMMARY AND OUTLOOK

We have developed a te
hnique to perform few-nu
leon 
al
ulations in momentum spa
e

without employing partial wave de
ompositions. We 
all this the 3D te
hnique. We

began with the NN system and 
ontinued to 3N s
attering, whi
h was the Nd break-up

pro
ess in �rst order. The 3D te
hnique has been intended to be a viable alternative to

the su

esful PW te
hnique. At higher energies the 3D te
hnique should be better suited

than a PW based one. Here we summarize how we developed our 3D te
hnique for the

NN system and the Nd break-up pro
ess. The 
al
ulations in this work were 
arried out

based on the NN potentials AV18 [20℄ and Bonn-B [21℄. Finally we give an outlook for

further investigations as well as developments of the 3D te
hnique.

NN S
attering

To develop the 3D te
hnique it was ne
essary to start with NN s
attering, sin
e the NN

T-matrix is input to 
al
ulations of more 
omplex few-nu
leon systems. The �rst step

was to de�ne basis states for the NN system. We de�ned momentum-heli
ity basis states

being antisymmetri
 under ex
hange of the two nu
leons in momentum, spin and isospin

spa
e. As re
e
ted by the name the momentum-heli
ity basis states were 
onstru
ted

using momentum ve
tors states and heli
ity states of NN total spin. The NN total spin

was 
hosen instead of individual spins of the two nu
leons to allow obtaining a smaller

number of LSE's to be solved. The symmetry properties of the T-matrix and the NN

potential matrix elements in the momentum-heli
ity basis states allow the redu
tion of

the number of the LSE's for the NN T-matrix from 10 to 5 for ea
h NN total isospin state.

All LSE's in the 3D te
hnique are integral equations in two variables, the magnitude of

the relative momentum between the two nu
leons and the s
attering angle.

The NN potential is expressed in a set of six independent operators, 
. We de�ned the

223
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 operators to be suitable for the momentum-heli
ity basis states and thus, allow for very

simple evaluations of the NN potential matrix elements. We derived a relation between

the set of the 
 operators and the set of six operators known as the Wolfenstein operators

[26℄. This is possible due to the invarian
es, symmetry 
onditions and the hermiti
ity of

the NN potential [41℄. We want to point out that any NN potential given in operator form


an be used in the 3D te
hnique. Representative potentials are the AV18 and Bonn-B

potentials, whi
h were used in this work.

In order to 
al
ulate observables and 
ompare them with NN data we 
onne
ted the

T-matrix elements in the momentum-heli
ity basis states to the ones in a physi
al repre-

sentation. The physi
al representation uses spins and isospins of the individual nu
leons,

where the spins are quantized along an arbitrary but �xed z axis. Hen
e, the physi
al

representation is 
losely 
onne
ted to the experimental set up of NN s
attering. We also

expanded the T-matrix elements in the momentum-heli
ity basis states into partial waves

and 
ompared the resulting NN phase shifts to the ones from standard PW 
al
ulations.

The agreement with the PW 
al
ulations for the NN phase shifts as well as for the NN

observables is perfe
t. The 
omparisons for NN observables showed that espe
ially for

higher energies many partial waves are needed in the PW 
al
ulations to 
onverge to

the 3D 
al
ulations. For example, at E

lab

= 300 MeV the PW 
al
ulation for the np

di�erential 
ross se
tion must take at least j

max

= 16 
orresponding to 98 LSE's. We also


ompared our 3D 
al
ulations to observables based on the phase shifts determined in a

partial wave analysis (PWA) as well as dire
tly to NN data for laboratory energies higher

than 300 MeV. Later, when we 
al
ulated the Nd break-up pro
ess at various energies,

we needed the NN T-matrix for those energies. Sin
e the 3D te
hnique is appli
able with

equal performan
e for any energy, the 
omparisons were intended to 
he
k the imple-

mentations of the two NN potentials AV18 and Bonn-B in the 3D te
hnique at higher

energies. Though these two parameterized NN potentials have been �tted to NN data

only for energies below 350 MeV, the 
omparisons with the PWA results and NN data

showed nevertheless rather good agreements.

The Deuteron

Conventionally the deuteron has always been 
al
ulated as a set of 
oupled equations for

orbital angular momenta l = 0 and l = 2. It was interesting to investigate, if we 
an

use the momentum-heli
ity basis states for a solution of the NN bound state. To a
hieve

this we proje
ted the deuteron state and the eigenvalue equation onto this basis. Thus,

we de�ned the deuteron wave fun
tion 
omponents, whi
h are three-dimensional, in the
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momentum-heli
ity basis states. We also de�ned deuteron probability densities in the

momentum-heli
ity basis states. We derived the deuteron equations in the momentum-

heli
ity basis states as two 
oupled integral equations in two variables, the magnitude of

the relative momenta between the two nu
leons and an angle referring to an arbitrary z

dire
tion. We related the deuteron wave fun
tion 
omponents in the momentum-heli
ity

basis states to the ones in the PW basis states. This 
onne
tion allows to 
al
ulate the

PW proje
ted deuteron wave fun
tion 
omponents in s and d waves from the deuteron

wave fun
tion 
omponents in the momentum-heli
ity basis states. Comparisons with the

PW 
al
ulations for the deuteron s and d waves showed good agreements.

Next, using the momentum-heli
ity basis states, again we formulated the deuteron

equation and the deuteron wave fun
tion 
omponents in a di�erent way. At �rst we

kept the deuteron state being expanded in partial waves, and then derived an operator

form for the deuteron wave fun
tion in momentum spa
e. By means of the momentum-

heli
ity basis states the deuteron wave fun
tion in operator form led to the deuteron

wave fun
tion 
omponents in the momentum-heli
ity basis states, but now with analyti


angular behavior. This analyti
 angular behavior 
on�rmed the numeri
al one obtained in

the �rst formulation. This allowed us to derive the deuteron equation in one variable only,

namely the magnitude of the relative momentum between the two nu
leons. We solved

this equation and obtained the same results as those in the �rst formulation. Again we


onne
ted to the standard PW de
omposition and obtained good agreements for the PW

proje
ted deuteron wave fun
tion 
omponents in s and d waves. Finally by means of the

deuteron wave fun
tion in operator form we investigated in a 3D fashion the probability

densities for some spin 
on�gurations of the two nu
leons inside the deuteron for an overall

polarized deuteron.

The Nd Break-Up Pro
ess

Finally we stepped to a 3N system and extended the 3D te
hnique for the Nd break-up

pro
ess. We are interested in higher energies and de
ided to 
onsider only the leading order

term of the full Nd break-up amplitude. Thus, we wanted to see if the leading term alone


ould des
ribe the Nd break-up pro
ess for the higher energies being 
onsidered, whi
h

were beyond ' 200 MeV nu
leon laboratory energy. We used the Faddeev's s
heme to

treat the Nd break-up pro
ess. For simpli
ity we kept the deuteron state being expanded

in partial waves. This was a natural step, sin
e the deuteron wave fun
tion has only two

partial wave 
omponents, s and d waves. We started with deriving the leading term of the

full Nd break-up amplitude in the 3N basis states, whi
h were in a physi
al representation.
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As in the NN s
attering 
ase the physi
al representation uses spins and isospins of the

individual nu
leons, where the spins are quantized along an arbitrary but �xed z axis. The

kinemati
s of the three nu
leons were des
ribed by two Ja
obi momenta su
h, that the

3N system was 
onsidered as 
onsisting of one nu
leon and a 2N subsystem. Symmetry

properties under ex
hange of the three nu
leons were introdu
ed to the leading term

of the full Nd break-up amplitude by means of permutation operators. As a result we

obtained an expression for the leading term in terms of the NN T-matrix elements in

the physi
al representation. Using the previously derived physi
al representation of the

NN T-matrix elements it was straightforward to obtain the leading term of the full Nd

break-up amplitude in terms of the NN T-matrix elements in the momentum-heli
ity basis

states. In the resulting expression the initial 2N relative momenta as arguments of the

NN T-matrix elements in the momentum-heli
ity basis states were pointing in arbitrary

dire
tions. To solve the NN LSE's for the NN T-matrix we 
hoose a �xed, say z, dire
tion

as the dire
tions of the initial NN relative momenta. Therefore, as a �nal step we rotated

the NN T-matrix elements in the momentum-heli
ity basis states su
h, that the initial

2N relative momenta were pointing into a �xed z dire
tion. The rotation then led to an

intri
ate additional phase fa
tor.

With this leading term of the full Nd break-up amplitude in the momentum-heli
ity

basis states we 
al
ulated observables. Sin
e for higher energies one also has to expe
t

relativisti
 e�e
ts to be important, we took a further step, namely in
luded relativisti


kinemati
s. Here we restri
ted ourselves to a very �rst and ne
essary step, namely to

repla
e the nonrelativisti
 Ja
obi momenta and energy arguments of the nonrelativisti


leading term with the relativisti
 expressions. Finally we derived the 
ross se
tion using

the standard relativisti
 s
attering theory. Thus, the leading term and the phase spa
e

fa
tor of the 
ross se
tion 
hanged 
ompared to the one obtained using nonrelativisti


s
attering theory.

We applied the formulation for the Nd break-up pro
ess in a 3D approa
h to the (p,n)


harge ex
hange rea
tion in the in
lusive pd break-up pro
ess. In this pro
ess a proton is

dire
ted towards a deuteron, whi
h then breaks up, and �nally the neutron is dete
ted,

while the two protons are not dete
ted. We 
al
ulated the spin averaged di�erential 
ross

se
tion (shortly 
alled 
ross se
tion) and some spin observables, whi
h were the neutron

polarization, the proton analyzing power and the polarization transfer 
oeÆ
ients. We

dis
ussed three di�erent aspe
ts of our 
al
ulations. First, we 
ompared our 
al
ulations

to the PW 
al
ulations for proton laboratory energies E

lab

up to 197 MeV. It turned

out that up to E

lab

= 100 MeV our 
al
ulations still agreed with the PW 
al
ulations.

There was, however, already a dis
repan
y of about 1.7% for the 
ross se
tion peak at
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100 MeV, where the PW 
al
ulations took 2N states of 2N total angular momenta j � 7

and 3N states of 3N total angular momenta J � 31=2. In fa
t, by taking so many

angular momentum states one has already rea
hed the present limits of PW 
al
ulations.

At E

lab

= 197 MeV our 
al
ulations disagreed with the PW 
al
ulations with j � 7 and

J � 31=2, sin
e the PW 
al
ulations did not suÆ
iently 
onverge. A 
onvergen
e test also

showed that the 2N total angular momentum states are more important than those of the

3N total angular momentum for the PW 
al
ulations to a
hieve 
onvergen
e. For the same

number of total angular momentum states taken into a

ount disagreement between our


al
ulations and the PW 
al
ulations grows rapidly as the energy in
reases. We 
on
luded

that for E

lab

> 100 MeV PW 
al
ulations 
annot be used safely to a

urately des
ribe

the Nd break-up pro
ess.

Se
ondly, we wanted to show the importan
e of res
attering e�e
ts. Thus, we 
om-

pared our 
al
ulations at E

lab

= 197 MeV to the PW full Faddeev 
al
ulations, whi
h

in
luded not only the leading term but also the res
attering terms of the full pd break-up

amplitude. The 
omparisons showed that at this energy res
attering e�e
t do o

ur and

mostly show up in the 
ross se
tion and the analyzing power. For these two observables

in
lusions of res
attering terms led to results 
loser to the data. We 
on
luded that at

E

lab

= 197 MeV res
attering terms of the full Nd break-up amplitude still have to be


onsidered.

For energies higher than 197 MeV we had no PW full Faddeev 
al
ulations to 
ompare

with. Therefore, we 
ompared dire
tly to the data at E

lab

= 346 and 495 MeV. For

these energies we 
ould only 
onje
ture that res
attering terms may be ne
essary, sin
e

dis
repan
ies to the data were visible.

At last, we studied the e�e
t of relativisti
 kinemati
s in our 
al
ulations. For this

purpose we 
ompared our 3D 
al
ulations with and without relativisti
 kinemati
s to

ea
h other for energies of 197, 346 and 495 MeV, at whi
h we also had the experimental

data. At these energies we observed relativisti
 e�e
ts mostly in the 
ross se
tions and the

analyzing powers. For these two observables relativisti
 kinemati
s led to better results in

relation to the data. The e�e
ts grew larger with in
reasing energy, as one might expe
t.

In 
omparisons to the data the observed relativisti
 e�e
ts together with the previously

seen res
attering e�e
ts led to a 
onje
ture that to better des
ribe the pd break-up pro
ess

at higher energies, say ' 200 MeV to 500 MeV, one needs to in
lude both, the res
attering

terms and the relativisti
 
orre
tions. In order to �nd out at whi
h energy relativisti


e�e
ts appear already to be important we 
ompared our 
al
ulations with and without

relativisti
 ingredients to ea
h other at 16 and 65 MeV. We found that at E

lab

= 65 MeV

relativisti
 e�e
ts started to be visible.
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Finally we would like to summarize our work within one paragraph. We have developed

a 3D te
hnique for NN s
attering, the deuteron and the Nd break-up pro
ess. The 3D

te
hnique has proven to be a good alternative to the PW de
omposition and appears to

be ne
essary at higher energies. In 
ontrast to the PW de
omposition the 3D te
hnique

requires mu
h less algebrai
 work. For lower energies, where the PW 
al
ulations are still

reliable, the 3D 
al
ulations show perfe
t agreements with the PW 
al
ulations.

Outlook

It is 
lear that after �nishing this work, there are still many investigations left on few-

nu
leon systems to pursue using the 3D te
hnique. For the NN system it is interesting

to implement in the 3D te
hnique new NN potentials su
h as the ones [60℄ based on the


hiral perturbation theory. For few-nu
leon bound systems with nu
leon numbers greater

than 2 the 3D te
hnique should ne
essarily be employed, sin
e unlike for the deuteron

the triton [61, 62, 63℄, the �-parti
le [64, 65℄ and other more 
omplex few-nu
leon bound

systems involve very many angular momentum states. For 3N s
attering we have not yet

solved the full Faddeev equation, whi
h has been shown to be important. We also have

not yet in
luded three nu
leon for
es (3NF's), whi
h may play a more predominant role

at higher energies. In appre
iating relativity we only 
onsidered relativisti
 kinemati
s.

We have not taken into a

ount the boost of the NN T-matrix [58℄ and the Wigner

rotations [59℄. These will be interesting and 
hallenging investigations to 
arry out in the

future. Espe
ially in in
orporating dynami
al features of relativity a 3D formulation will

be rewarding. From our point of view the next step will be to in
lude the res
attering

terms of the full Nd break-up amplitude and 3NF's. This will enter a domain at higher

energies, whi
h up to know has not yet been investigated thoroughly.
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Appendix A

THE ROTATION MATRIX

In this appendix we give derivations of the two relations for d

j

m

0

m

whi
h we used in the

main text. See Ref. [31, 32℄ for a more detailed des
ription of d

j

m

0

m

.

Wigner's de�nition for d

j

m

0

m

is

d

j

m

0

m

(�) =

h

(j +m)!(j �m)!(j +m

0

)!(j �m

0

)!

i

1

2

�

X

n

(�)

n

(j �m

0

� n)!(j +m� n)!(n +m

0

�m)!n!

�

 


os

�

2

!

2j+m�m

0

�2n

 

� sin

�

2

!

m

0

�m+2n

: (A.1)

It is obvious from this de�nition that d

j

m

0

m

is real.

The �rst relation is

d

j

m

0

m

(� � �) = (�)

j+m

0

d

j

m

0

�m

(�): (A.2)

Using the de�nition given in Eq. (A.1) this relation 
an be derived as

d

j

m

0

m

(� � �) =

h

(j +m)!(j �m)!(j +m

0

)!(j �m

0

)!

i

1

2

�

X

n

(�)

n
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�
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� � �
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�2n
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� � �
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m
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2j
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)!(j �m
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1
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�

X

n

(�)

n

(j �m
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�
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= (�)

2j

h

(j +m)!(j �m)!(j +m

0

)!(j �m

0

)!

i

1

2

�

X

u

(�)

j�m

0

�u

u!(u+m

0

+m)!(j �m� u)!(j �m

0

� u)!

�

 


os

�

2

!

2j�m�m
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�2u
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�

2

!

m

0

+m+2u

= (�)

2j

(�)

j�m

0

d

j

m

0

�m

(�)

= (�)

2(j�m

0

)

(�)

j+m

0

d

j

m

0

�m

(�)

= (�)

j+m

0

d

j

m

0

�m

(�): (A.3)

Similarly we 
an also have the following relation

d

j

m

0

m

(� � �) = (�)

j�m

d

j

�m

0

m

(�); (A.4)

whi
h is obtained if we insert u = j+m�n instead of u = j�m

0

�n in the third equality

of Eq. (A.3):

d

j

m

0

m

(� � �) = (�)

2j

h

(j +m)!(j �m)!(j +m

0

)!(j �m
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)!

i

1
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�

X
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(�)
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0
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�

 


os

�

2

!

2j+m+m
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2j

(�)

j+m

d
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0
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(�)
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2(j+m)

(�)

j�m

d

j
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0

m

(�)

= (�)

j�m

d

j
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0

m

(�):

The se
ond relation is

d

j

m

0

m

(�) = (�)

m

0

�m

d

j

�m

0

;�m

(�): (A.5)

This 
an be derived using Eqs. (A.2) and (A.4) as

d

j

m

0

m

(�) = (�)
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d

j
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;�m
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(�)
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d

j
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0

;�m
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= (�)

m

0
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d
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0
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Appendix B

THE 
 OPERATORS

The general stru
ture of a NN potential has the following form

V (q

0

;q) =

6

X

i;j=1

v

i

(q

0

; q; 
)A

ij




j

; (B.1)

where the 


i

operators are de�ned as




1

= 1 


2

= S

2




3

= S �
^
q

0

S �
^
q

0




4

= S �
^
q

0

S �
^
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5

= (S �
^
q

0

)

2

(S �
^
q)

2




6

= S �
^
qS �

^
q

: (B.2)

Note that the 


i

operators are 
omposed of heli
ity operators in the dire
tions of
^
q and

^
q

0

. These operators are related to the Wolfenstein W

i

operators given in Eq. (3.29) as

W

i

=

X

j

A

ij




j

; (B.3)

where the transformation matrix A = fA

ij

g is given as
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with

a =

p

1� 


2

b = q

02

+ q

2

� 2q

0

q
 
 = q

02

+ q

2

+ 2q

0

q
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� 4q
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1
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1

q

2
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1

q

02

�

1

q

2

:

This was derived by means of Mathemati
a. Obviously the matrix elements A

ij

are s
alar

fun
tions and depend only on q, q

0

and 
, whi
h is the angle between q

0

and q. We
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al
ulate the determinant of the matrix A and get

detA =

�i2

9
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and �nd the inverse matrix A
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to be
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In the transformation matrix A given in Eq. (B.4) there are terms of 


�1

, (1� 


2

)

�

1

2

and (1� 


2

)

�1

whi
h seem to 
ause singularities for 
 = 0; 1. If we insert this matrix A

into Eq. (B.3) we �nd those terms appear as
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We show in the following that these terms do not 
ause singularities.

Multiplied with a fa
tor 2 (just for 
onvenien
e), the numerator in Eq. (B.7) gives
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where we have used the identity relation
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For 
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therefore the numerator in Eq. (B.7) vanishes.
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Therefore, the numerators in Eqs. (B.8) and (B.9) vanish.

In the inverse A

�1

of the transformation matrix given in Eq. (B.6) there o

ur the

(1� 


2

)

�1

terms. Inverting the relation given in Eq. (B.3) this term appears only in 


2

as

f(q

02

+ q

2

)

2

� 4q

02

q

2




2

g (W

4

+W

5

)� (q

02

� q

2

)

q

(q

02

+ q

2

)

2

� 4q

02

q

2




2

W

6

1� 


2

: (B.11)
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 = 1 the numerator of this term vanishes as 
an be shown here
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Appendix C

THE BONN

ONE-BOSON-EXCHANGE

POTENTIAL

The pseudos
alar, s
alar and ve
tor part of the Bonn one-boson-ex
hange potential (OBEP)

takes the following form:
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where m denotes the nu
leon mass, m

�

(� = ps; s; v) the meson's mass, E =
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with �

�

being the 
uto�. In the propagator one has
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The

^

O

�

operators (� = ps; s; vv; vt; tt) take a form of a 
ombination of �
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�
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and �
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. These
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operators have to be expressed in terms of the 
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operators

given in Eq. (3.30), a

omplished in the following. First, the

^
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operators are written in

terms of the W

i

operators given in Eq. (3.29). An easy way to do this is that one rewrites
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Next using the transformation given in Eq. (3.31) and dis
ussed in detail in Appendix B

the expression for the
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operators are obtained as
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This task 
an also be done with help of symboli
 manipulation pa
kages, su
h as mathe-

mati
a.

One sees that the azimuthal behavior of the matrix elements V

�St

�

0

�

(q

0

;q) of the

potentials in Eqs. (C.1)-(C.3) in the momentum-heli
ity basis is just the one des
ribed

in Eq. (3.52). As shown in Chapter 3 this behavior leads to simpli�
ation in solving the

LSE.
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Appendix D

THE ARGONNE AV18

POTENTIAL
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^
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4

j

2
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ls2
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where � � jq

0

�qj. As shown in Eqs. (4.11)-(4.17) the

^

O

�

operators (� = ss; t; ls; l2; ls2)

are 
ombinations of proje
ted-spin operators along some axes, for example � �
^
q. These

^

O

�

operators have to be expressed in the 


i

operators. In similar way to that for the

Bonn OBEP, �rst we rewrite the

^

O

�

operators in terms of the W

i

operators. We obtain
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with

(q

0

� q)

2

= q

02

+ q

2

� 2q

0

q
 (D.17)
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^
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os �

0
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0

+ sin �

0

sin �

0


os(�

0

� �): (D.18)

Next by means of the transformation given in Eq. (3.31) and dis
ussed in detail in

Appendix B we get the expressions for the

^

O

�

operators in terms of the 


i

operators as
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=
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Con
erning azimuthal behavior one 
an 
he
k that the matrix elements V

�St

�

0

�

(q

0

;q) of

the potential given in Eqs. (D.3)-(D.9) in the momentum-heli
ity basis have azimuthal

behavior as des
ribed by Eq. (3.52).
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Appendix E

NUMERICAL REALIZATION FOR

NN SCATTERING

In this appendix we des
ribe the evaluation of integrals, the way we treat the prin
ipal

value singularity and solve the LSE's given in Eq. (3.73). We make also a note on the

numeri
al method in performing the Fourier-Bessel transformations given in Eqs. (4.11)-

(4.17).

E.1 Integration

In solving the LSE's in Eq. (3.73) altogether we have integrals in three variables q

00

, �

00

and �

00

. However, the integral in the variable �

00

, whi
h is given in Eq. (3.70), 
an be

evaluated independently. Therefore, the LSE's to be solved are two-dimensional (2D)

integral equations in the variables q

00

and �

00

. We evaluate these integrals by means of a

numeri
al integration (known also as quadrature) method. In our 
ase Gauss-Legendre

quadrature [66℄ is most suitable. For 
larity of des
ription all integrals in this subse
tion

will be written as

I =

Z

b

a

dxf(x):

The integration points and weights of the Gauss-Legendre quadrature are de�ned for

an integration within an interval [�1; 1℄. Therefore, these points and weights must be

mapped onto the interval [a; b℄ of the evaluated integral, as des
ribed in the following

equation

I =

Z

b

a

dxf(x) =

Z

1

�1

dyf(y)

=

X

i

w

i

f(x

i

) =

X

i

v

i

f(y

i

); (E.1)
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where the y

i

's and v

i

's are points and weights of the Gauss-Legendre quadrature, and the

x

i

's and w

i

's must be the 
orresponding points and weights for the evaluated integral,

respe
tively. For the �

00

- and �

00

-integrations we use a linear mapping given as

x

i

=

b� a

2

y

i

+

b+ a

2

w

i

=

1

2

(b� a)v

i

: (E.2)

For the q

00

-integration, whi
h is within the interval [0;1℄, we use two di�erent mapping

s
hemes for the Bonn-B and the AV18 potentials presented in the next paragraphs. The

Gauss-Legendre quadrature points are more dense at both ends than in the middle of the

interval. This is of spe
ial advantage for the �

00

-integrations, sin
e the T-matrix behaves

more peaked around forward and ba
kward dire
tions.

For the q

00

-integration in 
ase of the Bonn-B potential the y

i

's and v

i

's are mapped

onto the interval [0;1℄ in steps des
ribed as follows:

I =

Z

1

0

dxf(x) =

Z

1

0

dzf(z) =

Z

1

�1

dyf(y)

=

X

i

w

i

f(x

i

) =

X

i

u

i

f(z

i

) =

X

i

v

i

f(y

i

); (E.3)

where the z

i

's and u

i

's are points and weights of the integral with the interval [0; 1℄. In

the rightmost equalities a linear mapping is applied. Next the z

i

's and u

i

's are mapped

onto the interval [0;1℄ by employing the following mapping

x

i

= k tan

�

�

2

z

i

�

w

i

= k

�

2

u

i


os

2

�

�

2

z

i

�

: (E.4)

With this mapping the integration points are distributed su
h that the density de
reases

as the momentum in
reases, sin
e the T-matrix is getting smoother and falls o� at higher

momenta. This behavior of the integration point density is 
ontrolled by the 
onstant k.

Smaller k in
reases the density of points at lower momenta. The typi
al value of k is 1000

MeV/
 or 5.068 fm

�1

, depending on the units used.

For the AV18 potential the q

00

-integration is terminated at a 
ertain point q

3

. This

termination is unavoidable sin
e the potential is obtained by performing a numeri
al

Fourier-Bessel transformation of the AV18 potential in 
on�guration spa
e, whi
h is

diÆ
ult to realize for very high momenta. We found out that the integral interval 
an

be safely 
ut o� at q

3

= 150 fm

�1

. The interval [0; q

3

℄ is splitted into two intervals [0; q

2

℄

and [q

2

; q

3

℄ representing lower and higher momentum regions, respe
tively. In the higher

momenta interval [q

2

; q

3

℄ we use a linear mapping as given in Eq. (E.2), with a; b being

repla
ed by q

2

; q

3

. In the lower momenta interval [0; q

2

℄ a hyperboli
 mapping given in

the following is employed:

x

i

=

1 + y

i

1

q

1

�

�

1

q

1

�

2

q

2

�

y

i

w

i

=

�

2

q

1

�

2

q

2

�

v

i

n

1

q

1

�

�

1

q

1

�

2

q

2

�

y

i

o

2

: (E.5)
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Here q

1

is the momentum, where the interval [0; q

2

℄ is splitted into two intervals [0; q

1

℄

and [q

1

; q

2

℄ of equal number of points. The typi
al values for q

1

and q

2

are 3 fm

�1

and 10

fm

�1

, respe
tively.

For performing the above mentioned numeri
al Fourier-Bessel transformation to obtain

the AV18 potential in momentum spa
e we employ Filon's quadrature method [67℄. This

method is proven to be a

urate for integrations of strong os
illatory fun
tions su
h as

the ones in Eqs. (4.11)- (4.17) for large values of �. And 
ompared to another powerful

method, for example the Simpson's rule, it needs less integration points. For small � and

� = 0 we use the Gauss-Legendre quadrature with linear mapping.

Now we would like to give the number of integration points for all the q

00

-, �

00

- and

�

00

-integrations we have. To obtain these numbers we 
he
k for some lower partial waves

up to j = 4 the 
onvergen
e of phase shifts. The numbers of integration points mentioned

in the following are suÆ
ient to a
hieve a 
onvergen
e within four digits after the de
imal

point. This means the large phase shifts 
onverge within 6 signi�
ant �gures and the

small ones 4 signi�
ant �gures.

The original �

00

-integration within an interval [0; 2�℄ is rewritten within an interval

[0;

�

2

℄ as shown in the following notation:

I =

Z

2�

0

d�

00

f(
os(�

0

� �

00

))e

im(�

0

��

00

)

=

Z

2�

0

d�

00

f(
os�

00

)e

im�

00

=

Z

�

0

d�

00

n

f(
os�

00

)e

im�

00

+ f(� 
os�

00

)e

im(�

00

+�)

o

=

Z
�

2

0

d�

00

n

f(
os�

00

)

�

e

im�

00

+ e

im(2���

00

)

�

+ f(� 
os�

00

)

�

e

im(�

00

+�)

+ e

im(���

00

)

�o

: (E.6)

The se
ond equality is justi�ed by the periodi
ity of the integrand within 2�. In this

way the number of integration points 
an be redu
ed. For both potentials Bonn-B and

AV18 ten integrations points are suÆ
ient. In 
ase of the �

00

-integration it turns out that

for the Bonn-B potential one needs at least 32 integration points, whereas for the AV18

potential one 
an take 24 integration points. The q

00

-integration for the Bonn-B potential

requires 72 integration points in the S = 0 
ase and 48 points in the S = 1 
ase. For the

AV18 potential both in the S = 0 and S = 1 
ases 50 integration points are required for

the lower momenta interval [0; q

2

℄ and 22 points for the higher momenta interval [q

2

; q

3

℄.

Clearly one needs more integration points at lower momenta, where the T-matrix is not

smooth.
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E.2 Prin
ipal Value Singularity

The free propagator G

+

0

(E

q

) given in Eq. (2.12) for an outgoing wave 
an be written as

G

+

0

(E

q

) = lim

�!0

1

E

q

+ i�� E

q

00

=

P

E

q

� E

q

00

� i�Æ(E

q

� E

q

00

); (E.7)

where P in the �rst term in the last equality stands for the prin
ipal value part. This

term is singular at E

q

00

= E

q

. In the q

00

-integration of Eq. (3.73) this singularity o

urs at

q

00

= q. We treat the singularity problem by employing a redu
tion method [68℄ des
ribed

in the following.

Consider the following prin
ipal value integral

I =

Z

1

0

dx

Px

2

f(x)

a

2

� x

2

; (E.8)

where the integrand is singular at x = a. This integral 
an be rewritten as

I =

Z

1

0

dx

Px

2

f(x)

a

2

� x

2

�

Z

1

0

dx

a

2

f(a)

a

2

� x

2

; (E.9)

sin
e the se
ond term equals zero. Next we treat the singularity by evaluating the integral

as

I =

Z

1

0

dx

x

2

f(x)� a

2

f(a)

a

2

� x

2

: (E.10)

Thus, the numerator vanishes at x = a and the integrand is well de�ned at x = a. In 
ase

of the AV18 potential, where we do not integrate to 1, the integral is evaluated as

I =

Z

M

0

dx

x

2

f(x)� a

2

f(a)

a

2

� x

2

�

1

2

af(a) ln

�

M � a

M + a

�

; (E.11)

where the se
ond term results from

�

Z

1

M

dx

a

2

f(a)

a

2

� x

2

:

E.3 Solving the Lippmann-S
hwinger Equation for

the T-Matrix

In this subse
tion we des
ribe how the LSE's given in Eq. (3.73) are solved to obtain

the T-matrix elements T

�St

�

0

�

(q

0

;q). For S = 0 the LSE is an un
oupled equation and for

S = 1 we have for ea
h initial heli
ity � = 1; 0 two 
oupled equations for �nal heli
ities

�

0

= 1; 0. In favor of simpli
ity we express the LSE in the following notation:

T

q

0

�

0

�

0

= V

q

0

�

0

�

0

+ lim

�!0

X

�

00

Z

�

0

d�

00

Z

M

0

dq

00

q

002

mF

q

0

�

0

�

0

q

00

�

00

�

00

q

2

+ i�� q

00

2

T

q

00

�

00

�

00

; (E.12)
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suppressing all the parameters: spin S, isospin t and parity �

�

as well as the initial

variables: heli
ity � and the momentum's magnitude q, ex
ept the one in the propagator.

We 
hoose the interval for the q

00

-integration as [0;M ℄ instead of [0;1℄ to make it more

general, sin
e for the AV18 potential the integration is terminated at M = q

3

.

We write Eq. (E.12) in terms of a prin
ipal value part and a delta fun
tion and then

treat the prin
ipal value singularity by the method given in the previous subse
tion:
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�
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�
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Numeri
ally this equation is evaluated as

T

q

0

�

0

�

0

= V

q

0

�

0

�

0

+

X

�

00

X

�

00

w

�

00

2

4

X

q

00

w

q

00

q

002

mF

q

0

�

0

�

0

q

00

�

00

�

00

T

q

00

�

00

�

00

� q

2

mF

q

0

�

0

�

0

q�

00

�

00

T

q�

00

�

00

q

2

� q

00

2

�

1

2

(

ln

 

M � q

M + q

!

+ i�

)

qmF

q

0

�

0

�

0

q�

00

�

00

T

q�

00

�

00

#

= V

q

0

�

0

�

0

+

X

�

00

X

�

00

X

q

00

6=q

w

�

00

w

q

00

q

002

mF

q

0

�

0

�

0

q

00

�

00

�

00

T

q

00

�

00

�

00

� q

2

mF

q

0

�

0

�

0

q�

00

�

00

T

q�

00

�

00

q

2

� q

00

2

�

X

�

00

X

�

00

w

�

00

1

2

(

ln

 

M � q

M + q

!

+ i�

)

qmF

q

0

�

0

�

0

q�

00

�

00

T

q�

00

�

00

= V

q

0

�

0

�

0

+

X

�

00

X

�

00

X

q

00

6=q

w

�

00

w

q

00

q

002

mF

q

0

�

0

�

0

q

00

�

00

�

00

T

q

00

�

00

�

00

q

2

� q

00

2

�

X

�

00

X

�

00

w

�

00

8

<

:

X

q

00

6=q

w

q

00

q

q

2

� q

00

2

+

1

2

ln

 

M � q

M + q

!

+

1

2

i�

9

=

;

qmF

q

0

�

0

�

0

q�

00

�

00

T

q�

00

�

00

= V

q

0

�

0

�

0

+

X

�

00

X

�

00

X

q

00

2

4

�

Æ

q

00

q

w

q

00

q

00

q

2

� q

00

2

� Æ

q

00

q

8

<

:

X

q

000

6=q

w

q

000

q

q

2

� q

000

2

+

1

2

ln
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q
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�
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�
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q
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�
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�
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T

q

00

�

00

�

00

; (E.14)

where w

�

00

and w

q

00

are the weights for the �

00

- and q

00

-integrations, respe
tively, and

�

Æ

q

00

q

� (1� Æ

q

00

q

). Let us now simplify the notations, de�ne � for the 
ombination q

0

�

0

�

0

,
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� for q

00

�

00

�

00

and

P

�

for

P

�

00

P

�

00

P

q

00

. Next resolving Eq. (E.14) with respe
t to V

q

0

�

0

�

0

gives

X

�

A

��

T

�

= V

�

; (E.15)

with

A

��

� Æ

��

�

"

�

Æ

q

00

q

w

q

00

q

00

q

2

� q

00

2

� Æ

q

00

q

8

<

:

X

q

000

6=q

w

q

000

q

q

2

� q

000

2

+

1

2
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M � q

M + q

!

+

1

2

i�

9

=

;

3

5

w

�

00

q

00

mF

��

: (E.16)

Equation (E.15) is a matrix representation of a system of linear equation, with the size

of the symmetri
 matrix A being (n

q

00

� n

�

00

)

2

, where n

q

00

and n

�

00

are the numbers of q

00

-

and �

00

-integration points. A system of linear equations 
an be solved using methods like

the Gaussian elimination and the LU de
omposition, whi
h is better than the former one

[66℄. Some ready-to-use routines 
olle
ted as a library su
h as Lapa
k and NAG libraries

are also available at 
omputing 
enters, whi
h proved to be powerful. The Lapa
k routines


an also be downloaded from the site http://www.netlib.org/. In our 
al
ulations we use

one of the Lapa
k routines 
alled ZGESV.



Appendix F

TWO SUCCESSIVE ROTATIONS

In Chapter 6 we fa
ed two su

essive rotations, applied to the momentum-heli
ity states.

Here we evaluate two su

essive rotations in momentum spa
e and in spin spa
e. But we

�rstly give a few basi
 de�nitions and relations required in this appendix. See Refs.[32, 31℄

for more details.

A rotation of a system (a state) is performed by means of a rotation operator R(
^
p)

de�ned as

R(
^
p) = R(��0) = e

�iJ

z

�

e

�iJ

y

�

; (F.1)

where J

z

; J

y

are the z- and y-
omponents of the angular momentum operator J and (�; �)

the rotation angles and the dire
tion of p as well. The rotation operator R(
^
p) works on

the angular momentum state j
^
zjmi as

R(
^
p)j

^
zjmi = j

^
pjmi: (F.2)

Here j
^
pjmi is the rotated angular momentum state (shorted as the rotated state), given

as

j
^
pjmi = R(

^
p)j

^
zjmi

=

X

j

0

m

0

j
^
zj

0

m

0

ih
^
zj

0

m

0

jR(
^
p)j

^
zjmi

�

X

m

0

D

j

m

0

m

(
^
p)j

^
zjm

0

i; (F.3)

where

D

j

m

0

m

(
^
p) = D

j

m

0

m

(��0) = h
^
zjm

0

jR(
^
p)j

^
zjmi; (F.4)

whi
h we 
all the Wigner D-fun
tion. We see that R(
^
p) 
onserves j. In the following

text we use R

L

(
^
p) and R

S

(
^
p) for rotations in momentum spa
e and in spin spa
e, with

J being repla
ed by L and S, respe
tively. Thus,

R

L

(
^
p) = R

L

(��0) = e

�iL

z

�

e

�iL

y

�

R

S

(
^
p) = R

S

(��0) = e

�iS

z

�

e

�iS

y

�

: (F.5)

253



254 F Two Su

essive Rotations

A rotation R(��
) of a state j
^
zjmi 
orresponds to a 
hange of the Cartesian 
oor-

dinates r des
ribing the state through a rotation matrix M(��
). The new Cartesian


oordinates r

0

are related to the old ones r as

r

0

= M(��
)r: (F.6)

The rotation matrix M(��
) is given as

M(��
)r � M

z

00

(
)M

y

0

(�)M

z

(�)r; (F.7)

with

M

z

(�) =

0

B

B

B

�


os� sin� 0

� sin� 
os� 0

0 0 1

1

C

C

C

A

M

y

0

(�) =

0

B

B

B

�


os � 0 � sin �

0 1 0

sin � 0 
os �

1

C

C

C

A

(F.8)

M

z

00

(
) =

0

B

B

B

�


os 
 sin 
 0

� sin 
 
os 
 0

0 0 1

1

C

C

C

A

:

Here M

z

(�) represents a rotation of the 
oordinate system O through an angle � around

the z-axis, M

y

0

(�) a rotation of the rotated 
oordinate system O

0

through an angle �

around the rotated y'-axis, M

z

00

(
) a rotation of the rotated 
oordinate system O

00

through

an angle 
 around the rotated z"-axis. Thus, the rotation matrix M(��
) represents

three su

essive rotations, whi
h bring the old 
oordinate system O to the new one O

000

.

It follows that

M(��
)

=

0

B

B

B

�


os� 
os � 
os 
 � sin� sin 
 sin� 
os � 
os 
 + 
os� sin 
 � sin� 
os 


� 
os� 
os � sin 
 � sin� 
os 
 � sin� 
os � sin 
 + 
os� 
os 
 sin� sin 



os� sin� sin� sin� 
os �

1

C

C

C

A

:

(F.9)

F.1 Two Su

essive Rotations in Momentum Spa
e

Let us 
onsider a momentum state jpi with
^
p pointing in (�; �) dire
tion, expanded in

partial waves as

jpi =

X

lm

jplmiY

�

lm

(�; �); (F.10)
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where jplmi is de�ned to be quantized along the z-axis. Now take a spe
ial dire
tion

^
p =

^
z. The momentum state jp

^
zi is given as

jp
^
zi =

X

lm

jplmiY

�

lm

(0; 0) =

X

l

jpl0i

s

2l + 1

4�

: (F.11)

Applying to the state jp
^
zi a rotation operator R

L

(
^
p) given in Eq. (F.5) leads to

R

L

(
^
p)jp

^
zi = R

L

(��0)

X

l

jpl0i

s

2l + 1

4�

=

X

l

X

l

0

m

jpl

0

mih
^
zl

0

mjR

L

(��0)j
^
zl0i

s

2l + 1

4�

=

X

lm

jplmiD

l

m0

(��0)

s

2l + 1

4�

=

X

lm

jplmiY

�

lm

(�; �)

= jpi; (F.12)

where we have used the relation between the spheri
al harmoni
s and the Wigner

D-fun
tions given as

Y

�

lm

(�; �) =

s

2l + 1

4�

D

l

m0

(��0): (F.13)

Thus, R

L

(
^
p) rotates the state jp

^
zi to be
ome the state jpi.

Next we apply to the state jpi an inverse rotation operator R

�1

L

(
^
p

0

) = R

y

L

(
^
p

0

) =

R

L

(0;��

0

;��

0

). We �rstly take a look at the de�nition of the spheri
al harmoni
s

Y

l

0

m

0

(�

00

; �

00

):

Y

l

0

m

0

(�

00

; �

00

) � h
^
p

00

j
^
zl
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0
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= h
^
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jR

y

L

(
^
p

0

)R
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(
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p
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)j
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m
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= hR

L

(
^
p

0

)
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p

00

jR
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(
^
p

0

)j
^
zl

0

m

0

i

� h
^
p j

^
p

0

l

0

m

0

i; (F.14)

where we have de�ned the
^
p dire
tion as to be 
onne
ted to the

^
p

00

dire
tion a

ording to

j
^
p

00

i = R

y

L

(
^
p

0

)j
^
pi: (F.15)

Hen
e, the spheri
al harmoni
s Y

l

0

m

0

(�

00

; �

00

) 
an be obtained as a representation in
^
p of

the angular momentum state j
^
p

0

l

0

m

0

i with the quantization axis in the
^
p

0

dire
tion. Using

Eq. (F.14) we obtain

1

R

y

L

(
^
p

0

)jpi = R

L

(0;��

0

;��

0

)

X

lm

jplmiY

�

lm

(�; �)

1

In obtaining Eq. (F.19) one an also use the following equation [31℄

Y

l

0

m

0

(�

0

; �

0

) =

X

m

D

l

0

mm

0

(��
)Y

l

0

m

(�; �); (F.16)
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=
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=
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(
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)jp
^
zi: (F.19)

Inserting Eq. (F.12) into Eq. (F.19) leads to

R

y

L

(
^
p

0

)R

L

(
^
p)jp

^
zi = R

L

(
^
p

00

)jp
^
zi: (F.20)

Hen
e, we obtain that the two su

essive rotations R

y

L

(
^
p

0

)R

L

(
^
p) applied to the state jp

^
zi


an be repla
ed by the rotation R

L

(
^
p

00

). Consequently any number of su

essive rotations

in momentum spa
e 
an always be repla
ed by one rotation with the right rotation angles.

The angles (�

00

; �

00

) of p

00

are determined by the angles (�; �) of p and (�

0

; �

0

) of p

0

as


os �

00

= 
os � 
os �

0

+ sin � sin �

0


os(�� �
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) (F.21)

sin �

00

e

i�

00

= � 
os � sin �

0

+ sin � 
os �

0


os(�� �

0

) + i sin � sin(�� �

0

): (F.22)

Equations (F.21) and (F.22) are obtained from the rotation matri
es of the Cartesian


oordinates, whi
h 
orrespond to the rotations in Eq. (F.20). Su
h a rotation matrix

M(��
) 
orresponding to R(��
) is given in Eq. (F.9).

whi
h is obtained by applying the formal expression for a rotation of an angular momentum state given

in Eq. (F.2) to the spheri
al harmoni
s, whi
h are eigenstates of the orbital angular momentum operator

L. The angles (�

0

; �

0

) are 
onne
ted to (�; �) a

ording to

j
^
p

0

i = R

L

(��
)j
^
pi: (F.17)

Thus,
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zi: (F.18)
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F.2 Two Su

essive Rotations in Spin Spa
e

One may think that analogously the rotation identity given in Eq. (F.20) also applies

in spin spa
e. But this must be 
he
ked, sin
e analogies do not always lead to 
orre
t


on
lusions. Therefore, we evaluate two su

essive rotations in spin spa
e, independent of

the evaluation in momentum spa
e in the previous se
tion. We use the rotation operator

R

S

(
^
p) given in Eq. (F.5). Thus, we 
ompare the rotated spin state or the heli
ity state

j
^
p

00

S�i

1

given as

j
^
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00

S�i

1

= R

S

(
^
p

00

)j
^
zS�i (F.23)

with the rotated spin state j
^
p

00

S�i

2

given as

j
^
p

00

S�i

2

= R

y

S

(
^
p

0

)R

S

(
^
p)j

^
zS�i: (F.24)

Note that here the relation between (�

00

; �

00

), (�

0

; �

0

) and (�; �) given in Eqs. (F.21) and

(F.22) is still valid, sin
e this relation results from the transformation of the Cartesian


oordinates, whi
h is the same in both momentum spa
e and spin spa
e.

The state j
^
p

00

S�i

1

is eigenstate of the heli
ity operator S �
^
p

00

with eigenvalue �, as


an be shown as follows:

S �
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: (F.25)

Similarly it 
an be shown that the state j
^
p

00

S�i

2

is also eigenstate of the heli
ity operator

S �
^
p

00

with eigenvalue �:
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Moreover a s
alar produ
t of two states is rotationally invariant. Thus,

1

h
^
p

00

S�

0

j
^
p

00

S�i

1

=

2

h
^
p

00

S�

0

j
^
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00

S�i
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= h
^
zS�

0

j
^
zS�i : (F.27)

Therefore, it remains to �nd out whether the two heli
ity states j
^
p

00

S�i

1

and j
^
p

00

S�i

2

are

just the same or are distinguished from ea
h other by merely a phase fa
tor.
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The heli
ity states j
^
p

00

S�i

1

and j
^
p

00

S�i

2

are expanded in the spin states j
^
zS�i as
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where
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Therefore, instead of 
omparing j
^
p

00

S�i

1

with j
^
p

00

S�i

2

we 
ompare D

S

�

0

�

(�

00

�

00

0) with

X

S

�

0

�

(�

00

�

00

0), sin
e these are known fun
tions. We have two spin 
ases S = 0 and S = 1.

For S = 0 the spin state is rotationally invariant and thus
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The Wigner D-fun
tions obey a symmetry relation given as

D
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(��
): (F.32)

Therefore, for S = 1 the 
ase with initial heli
ity � = �1 
an be left out and we 
onsider

only six 
ases with �

0

= 1; 0;�1 and � = 1; 0.

The Wigner D-fun
tion D
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�
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(��0) is given as
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For � = 0 it follows
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= D
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0) (F.34)
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Thus,

X
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�

0
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�
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For � = 1 we obtain
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Hen
e, for � = 1 apparently we have

X

1
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The di�eren
e between Eq. (F.37) and Eq. (F.41) is at the value of �. And from Eq. (F.27)

we know that

jX

1
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(�
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2

= jD

1

�
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; (F.42)
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whi
h we also have 
he
ked using Eqs. (F.33) and (F.38)-(F.40). Therefore, we 
an be

sure that X

1

�

0

�

(�

00

�

00

0) is related to D

1

�

0

�

(�

00

�

00

0) by a phase fa
tor. The phase fa
tor must

depend on � and the set of angles (�; �; �

0

; �

0

), and is independent of �

0

. The latter 
an

be understood as we see in Eqs. (F.23) and (F.24) that there is no �

0

. We 
hoose the

phase fa
tor su
h that

X
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(�

00
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00
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where 
 depends on the set of angles (�; �; �

0

; �

0

) and is given through its tangential as
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The 
 
al
ulated in Eq. (F.44) is also valid for other 
ombinations of �

0

and �, sin
e 


is independent of �

0

and �. Equation (F.43) agrees with Eqs. (F.37), (F.41) and (F.42)

as well as Eq. (F.31) for S = 0. A further 
he
k shows that
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whi
h is 
onsistent with Eq. (F.43) as
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After all these evaluations we summarize that
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We have restored the spin notation S, sin
e Eqs. (F.48) and (F.49) are general and hen
e

apply to arbitrary spin S, in
luding S = 0.



Appendix G

NUMERICAL REALIZATION

FOR THE PROTON-NEUTRON

CHARGE EXCHANGE

REACTION

In this appendix we des
ribe how to numeri
ally 
al
ulate the Nd break-up amplitude

U

0

(p;q). As a reminder, the amplitude 
onsists of three parts U

(1)

0

(p;q), U

(2)

0

(p;q) and

U

(3)

0

(p;q) as

U

0

(p;q) = U

(1)

0

(p;q) + U

(2)

0

(p;q) + U

(3)

0

(p;q): (G.1)

These three parts are related to ea
h other through permutations of the nu
leons. The

�rst part U

(1)
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(p;q) is given as
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with

 

l

(�

0

) = the deuteron partial wave proje
ted wave fun
tion

T

�St

��

0

(p; �; 
os �

0

;E

p

) = the NN T-matrix elements
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The other parts U

(2)

0

(p;q) and U

(3)

0

(p;q) are obtained from Eqs. (G.2)-(G.6) by applying

the following repla
ements

for U

(2)

0

(p;q) : f�;mg

f1;2;3g

! f�;mg
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G.1 Momentum Addition

There are several additions of momenta in the formulation, see for example Eqs. (G.3),

(G.4), (G.7) and (G.8). Thus, one has to �nd out the resulting momenta from these

additions by 
al
ulating their 
omponents. Sin
e we are working with a spheri
al 
oor-

dinate systems these 
omponents are the magnitude, the angles � to the z-axis and the

azimuthal angle �. It is straightforward to obtain these 
omponents of the momenta as

shown in the following.

Consider a momentum addition

C = A+B: (G.9)

The magnitude of C is given as
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): (G.11)

The 
omponents of C, whi
h are proje
ted on the axes of a Cartesian 
oordinate system,

are given as

C
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:

Thus, one 
an �nd the angle �

C

as
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= ar
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A

+B 
os �

B

C

!

: (G.12)
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The azimuthal angle �

C

is determined uniquely by its sine and 
osine together, whi
h are

given as
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We get the unique value of �
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in the following way

�

C

=

8

>

>

>

<

>

>

>

:

ar

os

�

A sin �

A


os�

A

+B sin �

B


os �

B

C sin �

C

�

if sin�

C

> 0

2� � ar

os

�

A sin �

A


os�

A

+B sin �

B


os�

B

C sin �

C

�

if sin�

C

< 0

(1� 
os �

C

)

�

2

if sin�

C

= 0

(G.13)

G.2 Integration

We 
onsider the Nd break-up pro
ess, where in the �nal state only one nu
leon is dete
ted.

Therefore, to 
al
ulate the observables in the pro
ess we sum over all possible dire
tions

of the other two nu
leons. This is realized by integrating over the dire
tion of the Ja
obi

momentum p of the undete
ted 2N subsystem, as shown in Eq. (6.24).

The
^
p-integration is two-fold, denoted as

I =

Z

�

0

d�

p

Z

2�

0

d�

p

f(�

p

; �

p

): (G.14)

To 
al
ulate this integral we use the Gauss-Legendre quadrature and a linear map-

ping as mentioned in Se
tion E.1. We vary the numbers of integration points to test

the 
onvergen
e of our integration, these are n

�

p

for the �

p

-integration and n

�

p

for the

�

p

-integration. We found that with n

�

p

= 48 and n

�

p

= 18 the integration 
onverges.

G.3 Interpolation

To 
al
ulate U

0

(p;q) one needs the NN T-matrix elements. Let us for example take

T

�St

��

0

(p; �; 
os �

0

;E

p

), whi
h are needed to 
al
ulate U

(1)

0

(p;q) given in Eq. (G.2). The NN

T-matrix elements T

�St

��

0

(p; �; 
os �

0

;E

p

) are ideally obtained dire
tly from the LSE's given

in Eq. (3.73). Thus, one �rst solves the LSE's at various energies E

p

and initial momenta

� of the two nu
leon subsystem. Then for ea
h pair of E

p

and � one knows the NN

T-matrix elements on 
ertain grids in �nal momenta p

0

and 
os �

00

. Among the p

0

-values

is also the required on-shell value p. Next one uses the same LSE's again to 
al
ulate the

NN T-matrix elements at the required angle 
os �

0

. This would be the ideal pro
edure

and the same also to obtain the 
orresponding NN T-matrix elements for U

(2)

0

(p;q) and
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U

(3)

0

(p;q). But it is not pra
ti
al sin
e very time 
onsuming. Therefore, we think of a

more e
onomi
 way and 
hoose to interpolate the NN T-matrix elements from the ones

exa
tly obtained from the LSE's, whi
h are prepared before the 
al
ulations. Though the

NN T-matrix elements are determined by four arguments, for example p; �; 
os �

0

and E

p

in

Eq. (G.2), the interpolation is three-dimensional, sin
e p and E

p

are related. In Eq. (6.48)

the relation between p and E

p

for the nonrelativisti
 
ase is given and in Eq. (6.127) for

the relativisti
 
ase. Thus, we interpolate along 
os �

0

; � and E

p

for U

(1)

0

(p;q) in Eq. (G.2)

and along the 
orresponding quantities for U

(2)

0

(p;q) and U

(3)

0

(p;q).

We use the same interpolation method as the one used in Chapter 4 for the AV18

potential, that is the modi�ed 
ubi
 hermite splines [44℄. This is a one-dimensional inter-

polation method, but 
an also be used for a multi-dimensional interpolation, des
ribed as

follows: Using this method a one-dimensional interpolation is performed as
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where f(x
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) are the interpolated values at x

i

and f(y
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) the known values at y

I
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of the

fun
tion f . The spline 
oeÆ
ients S

i;j

and the indi
es I

ij

are determined beforehand by

the sets fxg and fyg. Now, as an example of a multi-dimensional interpolation, a 3D

interpolation is performed as
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Thus, in fa
t one performs three one-dimensional interpolations as shown in the following.
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We prepare a 3D grid of the NN T-matrix elements, obtained from the LSE's given

in Eq. (3.73). We found that the ranges of the grid axes in U

(1)

0

(p;q), U

(2)

0

(p;q) and

U

(3)

0

(p;q) are the same, as shown in the next se
tion. Therefore, it is suÆ
ient to show

here only the ranges of 
os �

0

; � and E

p

. The range of 
os �

0

is set to be from -1 to 1:

�1 � 
os �

0

� 1: (G.18)

The ranges of E

p

and � depend on the proje
tile's kineti
 energy E

lab

. For reasons of

eÆ
ien
y we prepare a grid su
h that it 
an be used for any value of E

lab

within a 
ertain
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range, whi
h we are interested in. The highest E

lab

we are interested in is 500 MeV, where

there are experimental data to 
ompare with, and we 
hoose the lowest E

lab

to be 5 MeV.

Thus, for

5 MeV � E

lab

� 500 MeV (G.19)

we obtain the ranges of E

p

and � as

2:5 � 10

�4

MeV � E

p

� 335 MeV (G.20)

30:66 MeV � � � 982 MeV: (G.21)

See the next se
tion for the 
onne
tion between E

lab

and E

p

, �, and the determination of

these ranges.

The 
os �

0

-points within the range given in Eq. (G.18) are determined simply as the

Gauss-Legendre quadrature points. We found that 80 points are suÆ
ient for the inter-

polation to rea
h a 
ertain a

ura
y given in the next paragraph. As the NN T-matrix

elements 
hange smoothly with the energy and are getting smoother as the energy raises

we distribute the E

p

-points within the range given in Eq. (G.20) exponentially as follows:

Sin
e in a lower energy region the NN T-matrix elements 
hange stronger than in a higher

one we devide the range in two regions as

E

min

� E

(1)

p

� E

mid

E

mid

� E

(2)

p

� E

max

; (G.22)

where E

min

= 2:5 � 10

�4

MeV, E

max

= 335 MeV and E

mid

some energy between E

min

and

E

max

. Next E

(1)

p

and E

(2)

p

are 
al
ulated as

E

(1)

p;i

= e

x

(1)

i

E

(2)

p;i

= e

x

(2)

i

; (G.23)

with

x

(1)

i

=

i�1

n

1

�1

A

(1)

+B

(1)

; A

(1)

= ln

E

mid

E

min

; B

(1)

= lnE

min

; (i = 1; :::; n

1

)

(G.24)

x

(2)

i

=

i

n

2

A

(2)

+B

(2)

; A

(2)

= ln

E

max

E

mid

; B

(2)

= lnE

mid

; (i = 1; :::; n

2

)

: (G.25)

Here n

1

is the number of E

p

-points in region 1 and n

2

in region 2. In this way the natural

logarithm of the E

(i)

p

-point (i = 1; 2) varies linearly in A

(i)

and hen
e the E

(i)

p

-point varies

exponentially in A

(i)

. We use n

1

= 16 and n

2

= 24, with E

mid

being �xed to 0:5 MeV.

This value turned out to be our of suitable 
hoi
es to keep the strong variations of the

NN T-matrix at small energies and its interpolation under 
ontrol. Thus, we put a higher

density of points in the lower energy region. For the interpolation along � we determine the

�-points within the range given in Eq. (G.21) by means of the Gauss-Legendre quadrature

points and a tangential mapping given in Se
tion E.1, with the parameter k being equal
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to 5.068 fm

�1

and the number n

�

of �-points to 120. From the resulting list of �-points we

dis
ard �-points below 30.66 MeV and beyond 979.79 MeV, and then repla
e the spe
ial

�-point 979.79 MeV with 982 MeV. There are left 50 points of � from 30.66 MeV to 982

MeV.

We test our 3D-interpolation by 
omparing with 600 data of the NN T-matrix

elements, whi
h are 
al
ulated exa
tly using the LSE's given in Eq. (3.73). Thus, we


al
ulate the relative di�eren
es between the interpolated and the exa
t data. The 600

data are 
al
ulated for 30 di�erent s
attering angles from 0 to �, 10 NN 
.m. kineti


energies from 3 � 10

�4

MeV to 330 MeV and 2 magnitudes of the initial momenta. The

latter are 
hosen to be 
lose to the 
orresponding on-shell nonrelativisti
 momenta of the


hosen 10 energies. With the interpolation parameters given in the previous paragraph

we obtain that for the singlet spin states all the relative di�eren
es are below 1% for

the two NN potentials we use; these are the Bonn-B and the AV18. For the triplet spin

states there are 60 
ases for the NN potential Bonn-B and 34 for the AV18, where the

relative di�eren
es are larger than 2%. All other relative di�eren
es are less than 2%.

The 60 
ases for the Bonn-B and 34 for the AV18 o

ur in two 
ases, i.e. near the points,

where (1) the data 
hange sign while their 
urves are 
rossing the zero line and (2) the NN

T-matrix elements vary very sharply, for example, at the forward and ba
kward dire
tions.

The test, hen
e, shows that the interpolation grid is a

eptable.

Similar to the 
ase of the NN T-matrix elements, it is also not pra
ti
al to 
al
ulate the

deuteron partial wave proje
ted wave fun
tion  

l

(�

0

) exa
tly at the value of �

0

. Therefore,

we interpolate  

l

(�

0

) from the exa
t ones, obtained from the deuteron equation. We

prepare a grid of  

l

(�

0

) along �

0

. The �

0

-range depends on E

lab

and is the same as the

ranges of the 
orresponding quantities for U

(2)

0

(p;q) and U

(3)

0

(p;q) as shown in the next

se
tion. For E

lab

from 5 MeV to 500 MeV it is required to have the �

0

-range as

0:05 MeV � �

0

� 982 MeV: (G.26)

We determine the �

0

-points within this range using the Gauss-Legendre quadrature points

and a hyperboli
-linear mapping given in Se
tion E.1. Re
all that this is the way by whi
h

we solved the deuteron wave fun
tion in Chapter 5. Here we use the parameters for the

mapping as q

1

= 0:1 fm

�1

, q

2

= 1:5 fm

�1

, q

3

= 5 fm

�1

, 24 �

0

-points between 0 and q

2

,

and 24 �

0

-points between q

2

and q

3

. We repla
e the �rst point 5:099 � 10

�2

MeV with

5 � 10

�2

MeV and the last point 984:98 MeV with 982 MeV. We test the interpolation by


omparing with a more dense distribution of the deuteron partial wave proje
ted wave

fun
tion within the range given in Eq. (G.26), that is with 126 data. The test shows very

small relative di�eren
es, whi
h are below 0.1%. There are very few 
ases (less than 10
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ases), where the relative di�eren
es are greater than 0.1% but below 2.5%. But these

o

ur near the points, where the fun
tion 
hanges sign while 
rossing the zero line. Thus,

the test gives a good result.

G.4 Momenta and Energy Ranges for the Inter-

polation

To prepare the grid for the interpolations mentioned in the previous se
tion one needs

to know the lower and upper limits of the grid axes. For the grid axis 
os �

0

and the


orresponding axes in U

(2)

0

(p;q) and U

(3)

0

(p;q) the lower and upper limits are best set to

be -1 and 1, thus all possible values of the 
osines are 
overed. For the grid axes E

p

, �

and �

0

and the 
orresponding axes in U

(2)

0

(p;q) and U

(3)

0

(p;q) the lower and upper limits

have to be found. We 
al
ulate these limits �rstly for 
al
ulations of U

0

(p;q) without

relativisti
 kinemati
s. After that we test if the limits 
an also be used to 
al
ulate

U

0

(p;q) with relativisti
 kinemati
s. This is ne
essary, sin
e energies and momenta in

these two formulations have di�erent ranges of values. Finally, we take a grid, whi
h 
an

be used for both 
al
ulations with and without relativisti
 kinemati
s.

Let us de�ne the new notations E

(i)

NN

; Q

(i)

�

; Q

(i)

�

0

, where i = 1; 2; 3 refers to U

(1)

0

(p;q),

U

(2)

0

(p;q) and U

(3)

0

(p;q), su
h that

E

(1)

NN

= E

p

Q

(1)

�

= � Q

(1)

�

0

= �

0

: (G.27)

Thus,

for U

(1)

0

(p;q) :

8

>

>

>

<

>

>

>

:

E

(1)

NN

= E

d

+

3

4m

(q

2

0

� q

2

)

Q

(1)

�

=

�

�

�

1

2

q+ q

0

�

�

�

Q

(1)

�

0

=

�

�

��q�

1

2

q

0

�

�

�

(G.28)

for U

(2)

0

(p;q) :

8

>

>

>

>

<

>

>

>

>

:

E

(2)

NN

= E

d

+

3

4m

�

q

2

0

�

�

p�

1

2

q

�

2

�

Q

(2)

�

=

�

�

�

1

2

�

p�

1

2

q

�

+ q

0

�

�

�

Q

(2)

�

0

=

�

�

��

�

p�

1

2

q

�

�

1

2

q

0

�

�

�

(G.29)

for U

(3)

0

(p;q) :

8

>

>

>

>

<

>

>

>

>

:

E

(3)

NN

= E

d

+

3

4m

�

q

2

0

�

�

p+

1

2

q

�

2

�

Q

(3)

�

=

�

�

��

1

2

�

p +

1

2

q

�

+ q

0

�

�

�

Q

(3)

�

0

=

�

�

�p +

1

2

q�

1

2

q

0

�

�

�

; (G.30)

where the magnitude q

0

of the relative momentum of the proje
tile to the deuteron is

given as

q

0

=

2

3

k

lab

=

s

8

9

mE

lab

: (G.31)
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To 
al
ulate the lower and upper limits of E

(i)

NN

; Q

(i)

�

; Q

(i)

�

0

we need to know the ranges of

q as well as of

�

�

�p�

1

2

q

�

�

�. The q-range is known from the relation between q and p given in

Eq. (6.10) to be

0 � q �

s

q

2

0

+

4

3

mE

d

� q

max

: (G.32)

Thus, q is maximum if p is minimum and vi
e versa. The lower and upper limits of

�

�

�p�

1

2

q

�

�

� are given as

�

�

�

�

p�

1

2

q

�

�

�

�

min

=

�

�

�

�

p�

1

2

q

�

�

�

�

min

= 0 (G.33)

�

�

�

�

p�

1

2

q

�

�

�

�

max

=

�

p+

1

2

q

�

max

= q

max

: (G.34)

Equation (G.33) o

urs at q =

q

3

4

q

2

0

+mE

d

due to Eq. (6.10) and Eq. (G.34) is obtained

using Eq. (6.10) in the following way:

y = p+

1

2

q =

s

3

4

(q

2

0

� q

2

) +mE

d

+

1

2

q

dy

dq

�

�

�

�

�

y

max

=

�3q + 2

q

3

4

(q

2

0

� q

2

) +mE

d

4

q

3

4

(q

2

0

� q

2

) +mE

d

�

�

�

�

�

�

y

max

= 0

=) qj

y

max

=

1

2

s

q

2

0

+

4

3

mE

d

=

1

2

q

max

y

max

=

s

q

2

0

+

4

3

mE

d

= q

max

:

In summarizing we have the ranges of q and

�

�

�p�

1

2

q

�

�

� as

0 �

�

q;

�

�

�

�

p�

1

2

q

�

�

�

�

�

�

s

q

2

0

+

4

3

mE

d

: (G.35)

Equation (G.35) together with Eqs. (G.28)-(G.30) tell us that the lower and upper limits

of E

(i)

NN

; Q

(i)

�

, Q

(i)

�

0

are the same for all i = 1; 2; 3. Let us take E

(1)

NN

; Q

(1)

�

; Q

(1)

�

0

given in

Eq. (G.28), sin
e they have the simplest form, and then drop the supers
ript (1). The

lower and upper limits of E

NN

; Q

�

; Q

�

0

are obtained to be

E

NN;min

= E

d

+

3

4m

�

q

2

0

� q

2

max

�

= 0 (G.36)

E

NN;max

= E

d

+

3

4m

�

q

2

0

� q

2

min

�

= E

d

+

3

4m

q

2

0

(G.37)

Q

�;min

= �

1

2

q

max

+ q

0

= �

1

2

s

q

2

0

+

4

3

mE

d

+ q

0

(G.38)

Q

�;max

=

1

2

q

max

+ q

0

=

1

2

s

q

2

0

+

4

3

mE

d

+ q

0

(G.39)
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Q

�

0

;min

= �qj

q=

1

2

q

0

+

1

2

q

0

= 0 (G.40)

Q

�

0

;max

= q

max

+

1

2

q

0

=

s

q

2

0

+

4

3

mE

d

+

1

2

q

0

: (G.41)

To simplify we 
an negle
t the deuteron binding energy E

d

in Eqs. (G.36)-(G.41).

Negle
ting E

d

does neither raise the minima nor lower the maxima of E

NN

; Q

�

; Q

�

0

. In

fa
t it lowers the minima and raises the maxima of E

NN

; Q

�

; Q

�

0

. Therefore, it is justi�ed

to negle
t E

d

even for lower proje
tile's laboratory kineti
 energy E

lab

, and thus lower q

0

,

sin
e the interpolation grid 
an still be safely used. We obtain after negle
ting E

d

the

ranges of E

NN

; Q

�

; Q

�

0

to be

0 � E

NN

�

3

4m

q

2

0

(G.42)

1

2

q

0

� Q

�

�

3

2

q

0

(G.43)

0 � Q

�

0

�

3

2

q

0

: (G.44)

Now we 
he
k if the ranges of E

NN

; Q

�

; Q

�

0

given in Eqs. (G.42)-(G.44) 
an also be

used to 
al
ulate U

0

(p;q) with relativisti
 kinemati
s. Finally we take a grid, whi
h 
an

be used to 
al
ulate U

0

(p;q) with and without relativisti
 kinemati
s. It is suÆ
ient to


he
k only the maximum of E

NN

, de�ned as E

NN;max

, and q

0

, for whi
h we de�ne the


orresponding relativisti
 quantities as E

(r)

NN;max

and q

(r)

0

. If E

NN;max

in Eq. (G.42) is larger

than or equal to the 
orresponding E

(r)

NN;max

, then the E

NN

-range given in Eq. (G.42) 
an

be used to 
al
ulate U

0

(p;q) with and without relativisti
 kinemati
s. If q

0

given in

Eq. (G.31) is less than or equal to the 
orresponding q

(r)

0

we use q

(r)

0

to 
al
ulate the

maxima of Q

�

and Q

�

0

, and q

0

to 
al
ulate the minimum of Q

�

. Here we keep E

lab

as denoting the laboratory kineti
 energy of the proje
tile, in 
ontrast to what we did

in Se
tion 6.3, where we rede�ned E

lab

as denoting the laboratory total energy of the

proje
tile.

Referring to Eq. (6.127) the relativisti
 kineti
 energy E

(r)

NN

in the 23-subsystem is

given as

E

(r)

NN

= 2

q

m

2

+ p

2

� 2m = M

23

� 2m; (G.45)

where M

23

is the invariant mass of the 23-subsystem. As 
an be 
he
ked in Eq. (6.104)

M

23

is 
onne
ted to the invariant mass M

0

of the 3N system as

M

0

=

q

m

2

+ q

(r)2

+

q

M

2

23

+ q

(r)2

=

q

9m

2

+ 4mE

lab

; (G.46)

where the rightmost equality is taken from the de�nition of M

0

given in Eq. (6.96) by

negle
ting E

d

. The maximal value of M

23

is M

0

�m, where q

(r)

= 0. Therefore, we obtain

E

(r)

NN;max

= M

0

� 3m
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=

q

9m

2

+ 4mE

lab

� 3m: (G.47)

Now we assume that E

(r)

NN;max

is less than E

NN;max

given in Eq. (G.42), with q

0

being

given in Eq. (G.31). We 
he
k this assumption as follows:

E

(r)

NN;max

< E

NN;max

q

9m

2

+ 4mE

lab

� 3m <

2

3

E

lab

q

9m

2

+ 4mE

lab

<

2

3

E

lab

+ 3m

9m

2

+ 4mE

lab

<

4

9

E

2

lab

+ 9m

2

+ 4mE

lab

0 <

4

9

E

2

lab

: (G.48)

The assumption that E

(r)

NN;max

< E

NN;max

is 
orre
t. Hen
e, the E

NN

-range given in

Eq. (G.42) 
an also be used to 
al
ulate U

0

(p;q) with relativisti
 kinemati
s.

From Eq. (6.110) the relativisti
 initial Ja
obi momentum q

(r)

0

is obtained by negle
ting

E

d

as

q

(r)

0

=

2m

M

0

k

lab

=

2m

p

9m

2

+ 4mE

lab

q

E

2

lab

+ 2mE

lab

=

s

4m(E

lab

+ 2m)

9m + 4E

lab

E

lab

: (G.49)

Now we assume that q

(r)

0

is larger than q

0

given in Eq. (G.31). We 
he
k if the assumption

is 
orre
t as follows:

q

(r)

0

> q

0

s

4m(E

lab

+ 2m)

9m+ 4E

lab

E

lab

>

s

8

9

mE

lab

(E

lab

+ 2m)

9m+ 4E

lab

>

2

9

9(E

lab

+ 2m) > 2(9m+ 4E

lab

)

E

lab

> 0: (G.50)

It is true that q

(r)

0

> q

0

. Hen
e, the ranges of Q

�

and Q

�

0

to be used for 
al
ulations of

U

0

(p;q) with and without relativisti
 kinemati
s are given as

1

2

q

0

� Q

�

�

3

2

q

(r)

0

(G.51)

0 � Q

�

0

�

3

2

q

(r)

0

: (G.52)
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The ranges of E

NN

given in Eq. (G.42) and of Q

�

; Q

�

0

given in Eqs. (G.51)-(G.52)

are energy-dependent. They enlarge as E

lab

in
reases. In addition the Q

�

-range is also

shifted as its minimum in
reases with E

lab

. Now, for pra
ti
al purposes we want to have

an interpolation grid, whi
h 
an be used for more than just one E

lab

. Thus, we determined

a 
ertain range for E

lab

we are interested in and then set the minimum of Q

�

to 
orrespond

to the lowest E

lab

, de�ned as E

lab;min

, and the maxima of E

NN

; Q

�

; Q

�

0

to the highest E

lab

,

de�ned as E

lab;max

. Finally we obtain the ranges of E

NN

; Q

�

; Q

�

0

as

0 � E

NN

�

2

3

E

lab;max

(G.53)

s

2

9

mE

lab;min

� Q

�

�

3

2

v

u

u

t

4m(E

lab;max

+ 2m)

9m+ 4E

lab;max

E

lab;max

(G.54)

0 � Q

�

0

�

3

2

v

u

u

t

4m(E

lab;max

+ 2m)

9m+ 4E

lab;max

E

lab;max

: (G.55)

Equations (G.53)-(G.55) must be taken as giving the narrowest and yet safe ranges of

E

NN

; Q

�

and Q

�

0

for the interpolations. Deviations are of 
ourse allowed as long as not

lowering the range-maxima and / or raising the range-minima. But the zero-minima as

in Eqs. (G.53) and (G.55) are ex
eptional. The NN T-matrix elements are known to

drop drasti
ally as the initial or the �nal momenta move away from the on-shell ones,


orresponding to the NN kineti
 energy. The NN kineti
 energy 
orresponding to the

minimum of Q

�

in Eq. (G.54) is not zero unless E

lab;min

is equal to zero. Thus, one 
an

repla
e the zero-minimum of E

NN

in Eq. (G.53) with a small number, mu
h less than

the NN kineti
 energy, whi
h 
orresponds to the minimum of Q

�

. The zero-minimum of

Q

�

0

in Eq. (G.55) 
an also be safely repla
ed by a small number, sin
e near Q

�

0

= 0 the

deuteron S-wave is almost 
at and the D-wave is approa
hing zero. Moreover, numeri
al

test shows that the minimum of Q

�

0

is never really zero. We are interested to 
al
ulate the

Nd break-up amplitude for E

lab

up to 500 MeV, where data exist. Thus, we set E

lab;max

to be 500 Mev and 
hoose 5 MeV as E

lab;min

. The ranges of E

NN

; Q

�

; Q

�

0

for this range

of E

lab

is

2:5 � 10

�4

MeV � E

NN

� 335 MeV (G.56)

30:66 MeV � Q

�

� 982 MeV (G.57)

0:05 MeV � Q

�

0

� 982 MeV: (G.58)
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