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ZUSAMMENFASSUNG UND

AUSBLICK

Wir haben ein Verfahren zur Berehnung von Wenignukleonsystemen im Impulsraum

entwikelt, ohne eine Partialwellenzerlegung (PW Zerlegung) anzuwenden. Wir nennen

dies das dreidimensionale (3D) Verfahren. Wir begannen mit dem Nukleon-Nukleon (NN)

System und fuhren mit dem Dreinukleonstreuproze� (3N Streuproze�) fort. Dies war

speziell der Nd Aufbruhsproze� in erster Ordnung in der NN T-Matrix. Das 3D Verfahren

war als eine vielversprehende Alternative zu der erfolgreihen PW Zerlegung beabsihtigt,

da es sih bei h�oheren Energien besser als ein auf Partialwellen basierendes Verfahren

eignen sollte. Hier fassen wir zusammen, sowohl wie wir das 3D Verfahren f�ur das NN

System und den Nd Aufbruhsproze� entwikelten als auh die Durhf�uhrung und die

Ergebnisse des 3D Verfahrens. Die Berehnungen in dieser Arbeit wurden basierend auf

den NN Potentialen AV18 [20℄ und Bonn-B [21℄ durhgef�uhrt. Shlie�lih geben wir einen

Ausblik auf weitere Untersuhungen und auh Entwiklungen des 3D Verfahrens.

NN Streuproze�

Um das 3D Verfahren zu entwikeln, war es notwendig, mit dem NN Streuproze� zu

beginnen, weil die NN T-Matrix der Input zur Berehnungen von komplexeren Wenignu-

kleonsystemen ist. Der erste Shritt war es, 3D Basiszust�ande des NN Systems zu

de�nieren. Wir de�nierten Impuls-Helizit�at-Basiszust�ande, welhe antisymmetrish unter

Austaush zwishen den beiden Nukleonen im Impuls-, Spin- und Isospinraum sind. Wie

der Name sagt, wurden die Impuls-Helizit�at-Basiszust�ande aus Impulsvektorzust�anden

und Helizit�atszust�anden zum gesamten NN Spin konstruiert. Es wurden niht die in-

dividuellen Spins der beiden Nukleonen sondern der NN Gesamtspin genommen. Dies

erm�oglihte es, eine kleinere Zahl von zu l�osenden Lippmann-Shwinger-Gleihungen

(LSG'en) zu erhalten. Die Symmetrieeigenshaften der T-Matrix- und der NN

Potentialmatrixelemente in den Impuls-Helizit�at-Basiszust�anden lassen die Reduzierung
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vi Zusammenfassung und Ausblik

der Zahl der LSG'en f�ur die NN T-Matrix von 10 auf 5 f�ur jeden NN Gesamtisospinzustand

zu. Alle diese LSG'en im 3D Verfahren sind Integralgleihungen in zwei Variablen. Diese

sind der Betrag des Relativimpulses zwishen den beiden Nukleonen und der Streuwinkel.

Das NN Potential wird durh eine Gruppe von sehs unabh�angigen Operatoren, 
,

ausgedr�ukt. Wir de�nierten die 
 Operatoren geeignet f�ur die Impuls-Helizit�at-Basis-

zust�ande, soda� eine sehr einfahe Ausarbeitung der NN Potentialmatrixelemente

erm�ogliht wird. Wir leiteten eine Relation zwishen der Gruppe der 
 Operatoren und

der Gruppe der sehs Operatoren, die als die Wolfenstein Operatoren [26℄ bekannt sind,

ab. Diese Gruppe von Operatoren wird �uber Invarianzen, eine Symmetriebedingung und

die Hermitizit�at des NN Potentials [41℄ eingeshr�ankt. Wir m�ohten darauf hinweisen,

da� ein beliebiges in Operatorform gegebenes NN Potential im 3D Verfahren angewandt

werden kann. Repr�asentative Potentiale sind die AV18 und Bonn-B Wehselwirkungen,

die in dieser Arbeit angewandt wurden.

Um Observablen zu berehnen und sie mit NN Daten zu vergleihen, verkn�upften

wir die T-Matrixelemente in den Impuls-Helizit�at-Basiszust�anden mit denen in einer

physikalishen Darstellung. Die physikalishe Darstellung ben�utzt die Spins und Isospins

der individuellen Nukleonen, wobei die Spins bez�uglih einer beliebigen aber festen

z-Ahse quantiziert sind. Deshalb ist die physikalishe Darstellung eng mit den

experimentellen Spineinstellungen eines NN Streuproze�es verbunden. Wir entwikelten

auh die T-Matrixelemente in den Impuls-Helizit�at-Basiszust�anden in Partialwellen und

verglihen die NN Streuphasen aus den 3D Berehnungen mit den normalen PW

Berehnungen. Die

�

Ubereinstimmungen mit den PW Berehnungen sowohl f�ur NN

Streuphasen als auh f�ur NN Observablen sind perfekt. Die Vergleihe in den NN

Observablen zeigten, da� viele Partialwellen besonders bei den h�oheren Energien in den

PW Berehnungen gebrauht werden, um Konvergenz der PW Berehnungen in bezug auf

die 3D Berehnungen zu erhalten. Zum Beispiel, bei E

lab

= 300 MeV mu� man in der PW

Berehnung f�ur den np di�erentiellen Wirkungsquershnitt mindestens j

max

= 16 nehmen,

welhes 98 LSG'en entspriht. Wir verglihen auh unsere 3D Berehnungen sowohl mit

Observablen, die auf den Streuphasen basieren, welhe in einer Partialwellenanalyse

(PWA) bestimmen wurden, als auh direkt mit NN Daten bei Laborenergien, die h�oher als

300 MeV waren. Sp�ater, wenn wir den Nd Aufbruhsproze� bei vershiedenen

Energien berehneten, brauhten wir die NN T-Matrix auh f�ur solhe h�ohere Energien.

Da das 3D Verfahren f�ur alle Energien in gleiher Weise anzuwenden ist, waren die

Vergleihe beabsihtigt, um die Anwendungen der zwei NN Potentiale AV18

und Bonn-B im 3D Verfahren bei h�oheren Energien zu testen. Obwohl diese zwei

parametrisierten NN Potentiale nur an NN Daten bei Energien, die niedriger als 350
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MeV sind, angepa�t wurden, zeigten die Vergleihe mit den Ergebnissen der PWA und

NN Daten trotzdem reht gute

�

Ubereinstimmungen.

Das Deuteron

Konventionell wird das Deuteron immer �uber gekoppelte Gleihungen f�ur die Drehim-

pulse l = 0 und l = 2 berehnet. Es war interessant, zu untersuhen, ob wir die

Impuls-Helizit�at-Basiszust�ande f�ur eine L�osung des NN Bindungszustandes benutzen

k�onnen. F�ur diesen Zwek projizierten wir den Deuteronzustand und die Eigenwert-

gleihung auf die Impuls-Helizit�at-Basiszust�ande. Somit de�nierten wir Deuteronwellen-

funktionskomponenten, die dreidimensional in den Impuls-Helizit�at-Basiszust�anden sind.

Wir de�nierten auh Deuteronwahrsheinlihkeitsdihten in den Impuls-Helizit�at-Basis-

zust�anden. Die abgeleiteten Deuterongleihungen in den Impuls-Helizit�at-Basiszust�anden

resultierten als zwei gekoppelte Integralgleihungen in zwei Variablen, dem Betrag des

Relativimpulses zwishen den beiden Nukleonen und einem Winkel, der sih auf eine be-

liebige z-Rihtung bezieht. Wir verkn�upften die Deuteronwellenfunktionskomponenten in

den Impuls-Helizit�at-Basiszust�anden mit denen der PW Basiszust�ande. Diese Verbindung

erm�ogliht es, die auf Partialwellen projizierten Deuteronwellenfunktionskomponenten in

S- und D-Wellen aus den Deuteronwellenfunktionskomponenten in den Impuls-Helizit�at-

Basiszust�anden zu berehnen. Die Vergleihe mit den PW Berehnungen in den S- und

D-Wellen des Deuterons zeigten gute

�

Ubereinstimmungen.

Als n�ahstes formulierten wir wieder die Deuterongleihung und die Deuteronwellen-

funktionskomponenten durh die Impuls-Helizit�at-Basiszust�ande auf eine andere Weise.

Zun�ahst belie�en wir den Deuteronzustand in Partialwellen, und leiteten dann eine

Operatorform der Deuteronwellenfunktion im Impulsraum ab. Verm�oge der Impuls-

Helizit�at-Basiszust�ande f�uhrte die Deuteronwellenfunktion in Operatorform zu den

Deuteronwellenfunktionskomponenten in den Impuls-Helizit�at-Basiszust�anden, welhe

jetzt aber analytishes Winkelverhalten hatten. Dieses analytishe Winkelverhalten

best�atigte das numerish gefundene in der ersten Formulierung. Das analytishe Winkel-

verhalten lie� es nun zu, die Deuterongleihung in nur einer Variablen, n�amlih dem

Betrag des Relativimpulses zwishen den beiden Nukleonen, abzuleiten. Wir l�osten diese

Gleihung und erhielten die gleihen Ergebnisse wie die bei der ersten Formulierung. Auh

hier stellten wir eine Verbindung mit der normalen PW Zerlegung her und bekamen gute

�

Ubereinstimmungen in den auf Partialwellen projizierten Deuteronwellenfunktionskompo-

nenten in S- und D-Wellen. Zuletzt untersuhten wir in dreidimensionaler Weise �uber die

Deuteronwellenfunktion in Operatorform die Wahrsheinlihkeitsdihte mehrerer
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Spinkon�gurationen der zwei Nukleonen im Deuteron f�ur ein insgesamt polarisiertes

Deuteron.

Der Nd Aufbruhsproze�

Shlie�lih kamen wir bei dem 3N System an und wir erweiterten das 3D Verfahren auf

den Nd Aufbruhsproze�. Wir interessieren uns f�ur h�ohere Energien und entshieden uns,

nur den f�uhrenden Term der vollen Nd Aufbruhsamplitude zu nehmen. Somit wollten

wir sehen, ob der f�uhrende Term allein den Nd Aufbruhsproze� bei den betrahteten

h�oheren Energien �uber ' 200 MeV Laborenergie des Nukleons ausreihend beshreiben

konnte. Wir wandten das Faddeev Shema an, um den Nd Aufbruhsproze� zu behandeln.

Der Einfahkeit halber belie�en wir den Deuteronzustand in Partialwellen. Das war ein

nat�urliher Shritt, da die Deuteronwellenfunktion nur zwei Partialwellenkomponenten

in S- und D-Wellen hat. Wir begannen damit, den f�uhrenden Term der vollen Nd Auf-

bruhsamplitude in den 3N Basiszust�anden, welhe in einer physikalishen

Darstellung waren, auszuarbeiten. Wie beim NN Streuproze� geht man in der

physikalishen Darstellung von Spins und Isospins der individuellen Nukleonen aus, die

entlang einer beliebigen aber festen z-Ahse quantiziert sind. Die Kinematik der drei

Nukleonen wurde von zwei Jaobi Impulsen so beshrieben, da� das 3N System als ein

System betrahtet wurde, das aus einem Nukleon und einem 2N Subsystem besteht.

Symmetrieeigenshaften unter Austaush der drei Nukleonen wurden durh Permutation-

operatoren im f�uhrenden Term der vollen Nd Aufbruhsamplitude eingef�uhrt. Als Folge

bekamen wir einen Ausdruk des f�uhrenden Termes in den NN T-Matrixelementen in der

physikalishen Darstellung. Durh die vorher abgeleitete physikalishe Darstellung der NN

T-Matrixelemente war es einfah, den f�uhrenden Term der vollen Nd Aufbruhsamplitude

in den NN T-Matrixelementen in den Impuls-Helizit�at-Basiszust�anden zu erhalten. In

dem resultierenden Ausdruk zeigten die 2N Anfangsrelativimpulse als Argumente der

NN T-Matrixelemente in den Impuls-Helizit�at-Basiszust�anden in beliebige Rihtungen.

Um die NN LSG'en f�ur die NN T-Matrix zu l�osen, w�ahlen wir notwendigerweise eine

feste z-Rihtung als die Rihtung der NN Anfangsrelativimpulse. Deshalb drehten wir als

einen letzten Shritt die NN T-Matrixelemente in den Impuls-Helizit�at-Basiszust�anden,

die sih im f�uhrenden Term der vollen Nd Aufbruhsamplitude be�nden, soda� die 2N

Anfangsrelativimpulse in eine feste z-Rihtung zeigten. Diese Drehung f�uhrte zu einem

komplizierten zus�atzlihen Phasenfaktor.

Mittel dieses f�uhrenden Termes der vollen Nd Aufbruhsamplitude in den Impuls-

Helizit�at-Basiszust�anden berehneten wir Observablen. Da man bei h�oheren Energien mit



ix

relativistishen E�ekten rehnen mu�te, nahmen wir einen weiteren Shritt vor, n�amlih

relativistishe Kinematik in der Formulierung miteinzushlie�en. Wir leiteten jedoh niht

den f�uhrenden Term mit zus�atzlihen relativistishen Strukturen ab, sondern mahten nur

einen ersten aber wihtigen Shritt, n�amlih die nihtrelativistishen Jaobi Impulse und

Energieargumente des nihtrelativistishen f�uhrenden Termes durh die relativistishen

Gr�o�en zu ersetzen. Als Folge �anderte sih der f�uhrende Term. Zuletzt leiteten wir den

Wirkungsquershnitt entsprehend der �ublihen relativistishen Streutheorie ab. Daher

�anderte sih der Phasenraumfaktor des Wirkungsquershnittes verglihen mit dem der

nihtrelativistishen Streutheorie.

Wir wandten die Formulierung des Nd Aufbruhsprozesses in einem 3D Verfahren

auf die Proton-Neutron Ladungsaustaushreaktion im inklusiven pd Aufbruhsproze�

an. In diesem Proze� wird ein Proton auf ein Deuteron geshossen, das dann auf-

briht, und am Ende wird das Neutron detektiert, w�ahrend die zwei Protonen niht

gemessen werden. Wir berehneten den spingemittelten di�erentiellen Wirkungsquer-

shnitt (kurz den Wirkungsquershnitt) und mehrere Spinsobservablen: die Polarisierung

des Neutrons, die Analysierst�arke des Protons und die PolarisierungstransferkoeÆzienten.

Wir diskutierten drei Aspekte unserer Berehnungen. Erstens verglihen wir unsere

Berehnungen mit den PW Berehnungen bei Laborenergien des Protons bis 197 MeV.

Es wurde gezeigt, da� unsere Berehnungen mit den PW Berehnungen bis E

lab

= 100

MeV noh �ubereinstimmten. Es gab jedoh shon eine Diskrepanz von ungef�ahr 1.7%

in der Spitze des Wirkungsquershnittes bei 100 MeV, wobei die PW Berehnungen 2N

Zust�ande von 2N Gesamtdrehimpulsen j � 7 und 3N Zust�ande von 3N Gesamtdrehim-

pulsen J � 31=2 ber�uksihtigten. Mit dieser gro�en Zahl von Drehimpulszust�anden

in den PW Berehnungen erreiht man tats�ahlih shon die Grenzen der heutzutage

m�oglihen PW Berehnungen. Bei E

lab

= 197 MeV stimmten unsere Berehnungen

niht mit den PW Berehnungen basierend auf j � 7 und J � 31=2 �uberein, weil

die PW Berehnungen niht ausreihend konvergierten, wie in einem Konvergenztest

gezeigt wurde. Der Test zeigte auh, da� 2N Gesamtdrehimpulszust�ande f�ur die PW

Berehnungen f�ur die Konvergenz wihtiger sind als 3N Gesamtdrehimpulszust�ande. F�ur

die gleihe Zahl von Gesamtdrehimpulszust�anden nehmen die Diskrepanzen zwishen un-

seren Berehnungen und den PW Berehnungen bei wahsender Energie shnell zu. Wir

kamen zum Shlu�, da� PW Berehnungen bei E

lab

> 100 MeV niht siher benutzt

werden k�onnen, um den Nd Aufbruhsproze� gut zu beshreiben.

Zweitens wollten wir zeigen, wie wihtig Mehrfahstreue�ekte sind. Dazu verglihen

wir bei E

lab

= 197 MeV unsere Berehnungen mit den vollen Faddeev PW

Berehnungen, in welhen niht nur der f�uhrende Term sondern auh die Mehrfah-
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streuterme der vollen pd Aufbruhsamplitude eingeshlossen wurden. Die Vergleihe

zeigten, da� Mehrfahstreue�ekte bei dieser Energie tats�ahlih eintreten und meistens

in dem Wirkungsquershnitt und der Analysierst�arke zu sehen sind. F�ur diese bei-

den Observablen f�uhrte der Einshlu� der Mehrfahstreuterme in den Berehnungen zu

Ergebnissen, die n�aher bei den Daten liegen. Wir kamen zum Shlu�, da� Mehrfahstreu-

terme der vollen Nd Aufbruhsamplitude bei E

lab

= 197 MeV in den Berehnungen

beahtet werden m�ussen.

Bei Energien, die h�oher als 197 MeV sind, hatten wir keine vollen Faddeev PW

Berehnungen zur Verf�ugung, mit denen man vergleihen konnte. Deshalb verglihen

wir direkt mit den Daten bei E

lab

= 346 und 495 MeV. Bei diesen Energien konnten wir

nur vermuten, da� Mehrfahstreuterme vielleiht auh ben�otigt sind, da Diskrepanzen mit

den Daten zu sehen waren.

Shlie�lih betrahteten wir den E�ekt relativistisher Kinematik in unseren

Berehnungen. Dazu verglihen wir unsere 3D Berehnungen in nihtrelativistisher und

relativistisher Kinematik miteinander, und dies bei Energien von 197, 346 und 495 MeV,

wo auh experimentelle Daten vorliegen. Bei diesen Energien sahen wir relativistishe

E�ekte vor allem in den Wirkungsquershnitten und den Analysierst�arken. F�ur diese

beiden Observablen f�uhrte die relativistishe Kinematik zu besseren Ergebnissen bez�uglih

der Daten. Die E�ekte wurden gr�o�er, wenn die Energie stieg, welhes man von

relativistishen E�ekten erwartet. Aus den Vergleihen zu den Daten f�uhrten die

beobahteten relativistishen E�ekte zusammen mit den vorher gesehenen

Mehrfahstreue�ekten zu der Vermutung, da� in dem Energiebereih von ' 200�500 MeV

beides notwendig ist, Mehrfahstreuterme und relativistishe Korrekturen,

um den pd Aufbruhsproze� besser zu beshreiben. Um herauszu�nden, bei welher

Energie relativistishe E�ekte bereits wihtig werden, verglihen wir unsere 3D

Berehnungen in nihtrelativistisher und relativistisher Kinematik bei 16 and 65 MeV.

Wir fanden, da� relativistishe E�ekte shon bei E

lab

= 65 MeV an�ngen, deutlih

sihtbar zu werden.

Zum Shlu� wollen wir unsere Arbeit in einem Abshnitt zusammenfassen. Wir

entwikelten ein 3D Verfahren f�ur den NN Streuproze�, das Deuteron und den Nd

Aufbruhsproze�. Das 3D Verfahren erwies sih als eine gute Alternative zu der PW

Zerlegung und ersheint bei h�oheren Energien unausweihlih. Im Gegensatz zu der PW

Zerlegung erfordert das 3D Verfahren viel weniger algebraishe Arbeit. Bei niedrigen

Energien, wo die PW Berehnungen noh zuverl�assig sind, zeigen die 3D Berehnungen

perfekte

�

Ubereinstimmungen mit den PW Berehnungen.
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Ausblik

Von der Stelle an, wo wir unsere Arbeit beendeten, gibt es noh viele Untersuhungen �uber

Wenignukleonsysteme, die im 3D Verfahren durhzuf�uhren sind. Im Fall des NN Systems

ist es interessant, neueste und in Zukunft ersheinende NN Potentiale, wie z.B. das auf der

hiralen St�orungstheorie basierende NN Potential [60℄, im 3D Verfahren umzusetzen. Auf

Wenignukleonbindungssysteme mit Nukleonenzahlen gr�o�er als 2 sollte das 3D Verfahren

in jedem Fall angewandt werden, da das Triton [61, 62, 63℄, das �-Teilhen [64, 65℄ und

andere noh komplexere Wenignukleonbindungssysteme sehr viele Drehimpulszust�ande

enthalten. Bei dem 3N Streuproze� l�osten wir noh niht die volle Faddeev Gleihung,

welhes aber, wie wir zeigten, erforderlih ist. Wir ber�uksihtigten auh noh niht 3N

Kr�afte. Im Hinblik auf Relativit�at betrahteten wir bis jetzt nur relativistishe Kine-

matik. Wir ber�uksihtigten noh niht die Lorentztransformation der NN T-Matrix [58℄

und die Wignerrotationen [59℄. Diese werden interessante und herausfordernde Unter-

suhungen sein. Besonders bei Ber�uksihtigung dynamisher Merkmale von Relativit�at

wird das 3D Verfahren sih als sehr lohnend erweisen. Aus unserer Siht wird der n�ahste

Shritt sein, die Mehrfahstreuterme der vollen Nd Aufbruhsamplitude und 3N Kr�afte

zu ber�uksihtigen, und zun�ahst nur relativistishe Kinematik anzuwenden. Dies wird

ein Gebiet h�oherer Energien zug�anglih mahen, welhes bis jetzt noh niht gr�undlih

untersuht wurde.
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Chapter 1

INTRODUCTION

The goal of this work is the development of a pratial and aurate sheme for few-

body alulations, whih does not rely on the traditionally preferred method of angular

momentum deomposition.

The vast information about the nulear (or strong) interation has been and still is

obtained with ollision experiments. Beause of the short range of the nulear interation

and thus the small distanes involved, ollision experiments testing the short-range part

of the strong fore should be arried out at higher energies. Experimental e�orts at

the Kernfysikalishe Versneller Institute (KVI) in the Netherlands, the Researh Center

for Nulear Physis (RCNP) in Japan, the Cooler Synhrotron (COSY) in Germany, the

Indiana University Cylotron Faility (IUCF) in the United States, and other laboratories

onentrate on probing the nulear fore in a three-nuleon (3N) ontext to �nd out if

the strong fore ats only between two nuleons at a time or if there is a signi�ant

ontribution of a fore ating diretly between three nuleons.

Theory and alulations of three nuleon systems have a long history. After the �rst

formulation of a basi sheme by Faddeev [1℄ and a reformulation in terms of triads of

Lippmann-Shwinger equations [2℄, the �rst appliations were arried out by Amado [3℄,

alulating low energy neutron-deuteron (nd) sattering in a simple model based on rank 1

Yamaguhi S-wave nuleon-nuleon (NN) potentials [4℄. This was followed up by allowing

for higher rank NN potentials, whih however did not yet inlude the full omplexity of

NN fores. The restrition to �nite rank NN fores leads to a simpli�ation, namely that

the amplitude in the Faddeev equations depended only on one ontinuous variable. This

was of ourse highly desirable at that time due to the limited omputer resoures. For a

list of referenes on those early investigations see Ref. [5℄.

With the advent of more realisti NN fores, like e.g. the Paris [6℄, Nijmegen [7℄, Bonn

[8℄ and Argonne [9℄ potentials, whih were loal or non-loal in nature and therefore quite

1



2 1 Introdution

di�erent from �nite rank fores, the hallenge was to employ them diretly, whih then

leads to a dependene on two ontinuous variables in the amplitudes of the 3N Faddeev

equations. Pioneering alulations along that line were arried out by the Utreht group

[10℄. All these investigations were onerned with low energies inluding the 3N bound

states. Here it was most natural to take advantage of onserved quantities in the 3N

system, e.g. the onservation of the total angular momentum, and set up the alulations

in a basis, where the basis states are eigenstates of the total angular momentum. Espe-

ially at low energies, only a few angular momenta (often only s-waves) are expeted to

ontribute to observables due to the angular momentum barrier.

During the last two deades alulations of nd sattering based on momentum spae

Faddeev equations experiened enormous improvement and re�nement. It is fair to state

that below 200 MeV projetile energy the momentum spae Faddeev equations for 3N

sattering now an be solved with very high auray for the most modern two and three

nuleon fores. A summary of these ahievements is given in Ref. [5℄.

During the same two deades experimental failities with higher beam energy were

built, and older failities were either upgraded or seized to exist, with a few exeptions.

This is a natural trend if one wants to probe the strong interation at shorter distanes.

However, this trend to ever higher beam energies has a fatal onsequene for the tra-

ditional 3N sattering alulations arried out in a partial wave (PW) trunated basis.

Working in an angular momentum basis means that ontinuous angle variables are re-

plaed by disrete orbital angular momentum quantum numbers. This redues the num-

ber of ontinuous variables, whih have to be disretized in a numerial treatment. For low

projetile energies this proedure appears physially justi�ed due to arguments related to

the entrifugal barrier. Now going to high energies the algebrai and algorithmi work

arried out in a PW deomposition an be quite involved when solving Faddeev equations.

The most ruial fat however is, that if one wants to onsider 3N sattering at a few

hundred MeV projetile energy, the number of partial waves needed to ahieve numerial

onvergene proliferates, and limitations with respet to omputational feasibility and

auray are being reahed. At this point, the method of PW deomposition looses its

physial transpareny, and using angular variables diretly beomes more appealing. It

appears therefore natural to abandon PW representations ompletely and work diretly

with vetor variables. As an aside, this is ommon pratie in bound state alulations

based on variational [11℄ and Green's Funtion Monte Carlo (GFMC) methods [12℄, whih

are arried out in oordinate spae.

A momentum spae approah along this vein was pioneered for a system of three

bosons in Refs. [13, 14℄, where the momentum spae Faddeev equations were solved for
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the bound as well as the sattering state.

The aim of this work is more ambitious. We want to employ realisti NN interations

in our alulations. This means we have to inorporate spin degrees of freedom into a

formulation of the Faddeev equations. Sine the �rst step to any Faddeev alulation is

the solution of the Lippmann-Shwinger (LS) equation for the two-nuleon T-matrix, this

will have to be our �rst foal point.

Although there are already suggestions in the literature how to solve the two-body LS

equations for realisti NN potentials without PW deomposition [15, 16, 17℄ we prefer to

develop our own sheme whih will be onsistent with our later use of the NN T-matrix

in 3N sattering alulation. We hoose an approah based on the total heliity of the

NN system as spin variable. From our point of view this is the preferred starting point to

later progress to the 3N system. In this work we will not solve the full Faddeev equations

for three nuleons, but rather onsider the �rst term in the multiple sattering series built

up by the Faddeev equations, and onentrate on break-up observables. Of partiular

interest are the spin-transfer oeÆients in the (p,n) harge exhange reation on the

deuteron, whih reently has been measured at IUCF [18℄ and RCNP [19℄. Sine these

measurements are arried out at `intermediate energies', i.e. 197 MeV and 346 MeV, the

�rst assumption is that it may be suÆient to onsider only the �rst order term. However,

sine the projetile energies are already high, we will also onsider relativisti kinemati

e�ets.

The thesis is organized as follows. Chapter 2 is written only to provide a short review

of NN sattering. There some de�nitions and quantities are introdued, whih are used

in the next hapters.

In Chapter 3 we begin to develop the formulation for NN sattering based on vetor

momenta and heliity eigenstates, in the following alled momentum-heliity basis states

and the formulation is shortly alled the 3D formulation. These basis states are de�ned

with all neessary symmetry properties for fermion states. We then de�ne six invari-

ant operators haraterizing any Galilei invariant NN potential, whih is invariant under

parity, time-reversal and rotations. For our appliation we onsider two di�erent NN

potentials, the Argonne V18 (AV18) potential [20℄ as representative of the most modern

NN potentials desribing the NN data below 350 MeV with a �

2

=datum of � 1, and the

Bonn-B potential [21℄ as representative for a meson exhange potential. For our work it

is ruial that the potentials an be given either in diret operator form (AV18) or as

Feynman diagrams (Bonn-B). Other modern potentials, whih are �tted by parameters

that depend on partial waves, are not suited for our formulation.

In Chapter 4 we show results from our alulations for NN sattering and disuss
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the NN potentials in some detail. We ompare some NN phase shifts obtained from the

3D alulations to those obtained from traditional PW alulations. We also show the

behavior of the T-matrix elements and ompare NN sattering observables to data and

to the results of the PW alulations.

In Chapter 5 we formulate a 3D approah for the deuteron using momentum-heliity

basis states. We derive two formulations. The �rst is based on a 3D ansatz, while the

seond one is a mixture of 3D and PW tehniques. For both formulations we intro-

due a set of 3D deuteron wave funtion omponents and derive the deuteron eigenvalue

equation. In the seond formulation we derive the deuteron wave funtion in operator

form. Projeted onto the momentum-heliity basis states this lead to the 3D deuteron

wave funtion omponents with analyti angular behavior. We perform alulations for

both formulations and onnet the numerial results to standard PW alulations. Finally,

using the deuteron wave funtion in operator form, we investigate some spin on�gurations

of the two nuleons inside the deuteron.

In Chapter 6 we formulate the nuleon-deuteron (Nd) break-up proess in a 3D, non-

relativisti Faddeev sheme. We derive the leading term of the full Nd break-up amplitude

in the momentum-heliity basis. The leading term is given in terms of the T-matrix

elements. Then we inlude relativisti kinematis in the formulation and derive the ross

setion aording to relativisti sattering theory. The appliation of relativisti kine-

matis a�ets not only the phase spae fator of the ross setion but also the leading

term of the full Nd break-up amplitude.

In Chapter 7 we show results from our 3D alulations for the (p,n) harge exhange

reation in the inlusive proton-deuteron (pd) break-up proess. In this proess a proton

is direted towards a deuteron, whih then breaks up, and �nally the neutron is deteted,

while the two protons are not deteted. We show the spin averaged di�erential ross

setion and some spin observables, whih are the neutron polarization, the proton ana-

lyzing power and the polarization transfer oeÆients. We begin with omparisons to the

PW alulations at various energies below 200 MeV and test the onvergene of the PW

alulations for energies up to ' 200 MeV. Next we ompare at ' 200 MeV to the full

Faddeev PW alulations, whih inlude also the resattering terms of the Nd break-up

amplitude, and hek the importane of resattering terms at energies ' 200 MeV. Un-

fortunately for energies higher than 200 MeV there is no full Faddeev PW alulation to

ompare with. Therefore, we ompare our results up to ' 500 MeV diretly to the data.

Last but not least we ompare between our 3D alulations with and without relativis-

ti kinematis, and �nd that as expeted the importane of the relativisti kinematis

inreases with inreasing energy. Finally we summarize in Chapter 8.



Chapter 2

SCATTERING OF TWO

NUCLEONS

This hapter is not meant as a thorough presentation of sattering theory for two nuleons

or even more general for two partiles sine that is already given at many plaes suh as

quantum mehanis textbooks and those speializing in sattering proesses, for example

Ref. [22℄. In fat, ompat presentations of two nuleon (2N) sattering an be found

in Refs. [23, 24, 25℄. Hene, the presentation here will be even more ompat and this

hapter is meant for pratial purpose and to give a short summary of neessary formulas.

In addition, de�nitions of some terminologies and quantities used in the next hapters an

be found here.

2.1 Kinematis of the Two-Nuleon System in La-

boratory and Center of Mass Referene Frames

A proton and a neutron are ommonly alled nuleon. Though the proton mass m

p

=

938:272 MeV di�ers from the neutron mass m

n

= 939:56533 MeV, this di�erene is

relatively small (� 0.14%). Therefore, the 'nuleon mass' m may be given by the average

of m

p

and m

n

.

Let k

i

and k

0

i

be the nuleon's momentum in the laboratory referene frame (laboratory

frame) in initial and �nal state, respetively, where i = 1; 2 indiates the i

th

nuleon. The

orresponding nonrelativisti energies are denoted by E

i

and E

0

i

, respetively. Assuming

nuleon 1 is the projetile and nuleon 2 is the target (k

2

= 0), the momentum situation

an be displayed by Fig. 2.1, where �

lab

is the sattering angle in the laboratory frame. The

�gure also shows quantities belonging to the enter of mass referene frame (.m. frame),

5
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θlab

q’
k

k’

1

1
a circle of radius q representing

= q
2

2

energy conservation

θ

k’2

Figure 2.1: The initial and �nal momenta, both in laboratory and .m. frames, in a 2N

sattering proess, where nuleon 1 ats as the projetile and nuleon 2 as the target

(k

2

= 0). The irle of radius q represents the energy onservation.

i.e. the sattering angle � and the relative momentum between the two nuleons in initial

and �nal states, q =

1

2

k

1

and q

0

=

1

2

(k

0

1

� k

0

2

), respetively. It is lear that � = 2�

lab

.

The total energy in the laboratory frame (E

lab

) and that in the .m. frame (E

m

) are

E

lab

= E

1

= E

0

1

+ E

0

2

(2.1)

E

lab

=

k

2

1

2m

=

k

02

1

2m

+

k

02

2

2m

(2.2)

E

m

=

q

2

2�

=

q

2

m

=

q

02

m

; (2.3)

where � =

1

2

m is the redued mass of the 2N system. E

m

together with the energy of

motion of the enter of mass of the two nuleons sum up to E

lab

and onsequently we an

get the relation between E

lab

and E

m

E

lab

=

(k

0

1

+ k

0

2

)

2

4m

+ E

m

=

k

2

1

4m

+ E

m

=

1

2

E

lab

+ E

m

= 2E

m

; (2.4)

whih an also be diretly seen from the fat that k

1

= 2q. Note that this relation between

E

lab

and E

m

is orret if one of the two nuleons is initially (or �nally) at rest.
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2.2 Sattering Matrix and Lippmann-Shwinger Equ-

ation

The essential information of a nuleon-nuleon (NN) sattering proess is ontained in

the sattering matrix. There are T-matrix, S-matrix, M-matrix and these matries are

related to eah other as

S = 1� 2�iÆ(E

0

� E)T (2.5)

M = ��(2�)

2

T: (2.6)

The delta funtion in the expression for the S-matrix indiates that the S-matrix is an

on-the-energy-shell (on-shell) quantity whereas the other two sattering matries are not

a�eted by this restrition and therefore have o�-shell as well as on-shell properties. We

solve for the T-matrix in our NN sattering alulations and later use it as input for our

3N alulations, where the T-matrix appears as an o�-shell quantity.

The T-matrix obeys the equation

T = V + V G

0

T; (2.7)

whih is the Lippmann-Shwinger Equation (LSE) for the T-matrix. V is the matrix

operator of the NN potential, G

0

(z) = (z � H

0

)

�1

is the free propagator with H

0

being

the free Hamiltonian and z a omplex number. The sattering wave is spreading out

from the sattering enter, and for an outgoing wave the orresponding free propagator

is G

+

0

(E) � lim

�!0

G

0

(E + i�), where E is the energy at whih the sattering ours and

the limit an be understood as to bring z lose to the physial spetrum of H

0

.

The T-matrix element is de�ned as

T (q

0

; �

0

;q; �) � hq

0

; �

0

jT jq; �i ; (2.8)

with �, �

0

being the disrete quantum numbers onsidered, like spin and isospin, and

jq; �i, jq

0

; �

0

i representing the initial, �nal state of the 2N system, respetively. A similar

de�nition applies also to the NN potential matrix element

V (q

0

; �

0

;q; �) � hq

0

; �

0

jV jq; �i : (2.9)

With the 2N states jq; �i being omplete

X

�

Z

dq jq; �i hq; �j = 1; (2.10)
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it is straightforward that the LSE for the T-matrix element, whih is the main equation

in the alulations, is given by

T (q

0

; �

0

;q; �) = V (q

0

; �

0

;q; �) +

X

�

00

Z

dq

00

V (q

0

; �

0

;q

00

; �

00

)G

+

0

(E

q

)T (q

00

; �

00

;q; �); (2.11)

with

G

+

0

(E

q

) = lim

�!0

1

E

q

+ i�� E

q

00

E

q

�

q

2

m

E

q

00

�

q

00

2

m

: (2.12)

2.3 Cross Setion and Spin Observables

Here we speify the quantum number � in the 2N state jq; �i as the magneti spin

quantum numbers of both nuleons

jq; �i = jq; m

s1

m

s2

i ; (2.13)

with m

si

= �

1

2

(i = 1, 2). Thus, there are four spin states whih onstitute a omplete

basis, in whih any spin state of the two nuleons an be given. A general pure state

jq; ni an be written as

jq; ni =

1

2

X

m

s1

;m

s2

=�

1

2

a

(n)

(m

s1

; m

s2

) jq; m

s1

m

s2

i : (2.14)

With regard to spin the state jq; ni is a vetor of four omponents and the T-matrix

element given in Eq. (2.8) is a 4 x 4 matrix. The general spin operator for suh a state is

also a 4 x 4 matrix and may be hosen as a produt of two 2 x 2 matries

�

(1)

�

�

(2)

�

� �

(1)

�


 �

(2)

�

; (�; � = 0; 1; 2; 3); (2.15)

with �

0

and �

i

(i = 1,2,3) being a matrix of one and the Pauli matries, respetively:

�

0

=

0

�

1 0

0 1

1

A

; �

1

=

0

�

0 1

1 0

1

A

; �

2

=

0

�

0 �i

i 0

1

A

; �

3

=

0

�

1 0

0 �1

1

A

; (2.16)

and the upper indies 1, 2 denoting the nuleon on the state of whih the �

�

operator

works.

In experiments we deal not only with two nuleons but many more in the beam and

the target. Therefore, the state is a mixed state of pure 2N states as given in of Eq. (2.14),

and the expetation value of an observable hOi is alulated by mean of a density matrix

�

� �

X

n

jni p

n

hnj ; (2.17)
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where p

n

is the normalized probability of the n

th

pure spin state aording to Eq. (2.14)

jni �

1

2

X

m

s1

;m

s2

=�

1

2

a

(n)

(m

s1

; m

s2

) jm

s1

m

s2

i : (2.18)

For instane, in the �nal state:

hOi =

Tr f�

f

Og

Tr f�

f

g

; (2.19)

with

�

f

= �nal density matrix

= M�

i

M

y

(2.20)

�

i

= initial density matrix.

Using Eq. (2.19) one derives the expression for the expetation value of a general spin

observable

D

�

(1)

�

�

(2)

�

E

f

in the �nal state in relation to the values

D

�

(1)

�

�

(2)

�

E

i

in the initial

state

I

D

�

(1)

�

�

(2)

�

E

f

=

1

4

X

�;�

D

�

(1)

�

�

(2)

�

E

i

Tr

n

M�

(1)

�

�

(2)

�

M

y

�

(1)

�

�

(2)

�

o

; (2.21)

where I is the di�erential ross setion summed over all possible �nal spin states

I =

X

j

d�

j

d


=

Tr f�

f

g

Tr f�

i

g

=

1

4

X

�;�

D

�

(1)

�

�

(2)

�

E

i

Tr

n

M�

(1)

�

�

(2)

�

M

y

o

(2.22)

(in the last equality Eq. (2.21) is applied again).

The simplest ase is if the beam and target are unpolarized and no spin measurements

in the �nal state are made. In this ase one measures the spin averaged di�erential ross

setion

I

0

=

1

4

Tr

n

MM

y

o

: (2.23)

The spin projetions on a ertain axis must be spei�ed and therefore unit vetors are

needed. Sine there are two referene frames - laboratory and .m. frames - two sets of

unit vetors are de�ned, one set for eah frame. But as an be heked in Ref. [25℄ for the

2N system the two sets are the same:

unit vetors for the initial state :

8

<

:

.m. frame :
^
q;

^

N;

^

N�
^
q

laboratory frame :

^

l;
^
n;

^
s

(2.24)

unit vetors for the �nal state :

8

<

:

.m. frame :

^

P;

^

N;

^

K

laboratory frame :

^

l

0

;
^
n

0

;
^
s

0

(2.25)
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with

^
n =

^
n

0

�

^

k

1

�

^

k

0

1

j

^

k

1

�

^

k

0

1

j

=

^

N �

q� q

0

jq� q

0

j

(2.26)

^

l �

^

k

1

=
^
q (2.27)

^
s �

^
n�

^

l =

^

N�
^
q (2.28)

^

l

0

�

^

k

0

1

=

^

P �

q+ q

0

jq+ q

0

j

(2.29)

^
s

0

�
^
n

0

�

^

l

0

=

^

K �

q

0

� q

jq

0

� qj

: (2.30)

In onnetion with a Cartesian oordinate system the beam's momentum k

1

is set typially

to point along the positive z-axis and the sattered nuleon's momentum k

0

1

is in the

xz-plane. Thus, the sattering takes plaes in the xz-plane and the unit vetors are

^

l =

0

B

B

B

�

0

0

1

1

C

C

C

A

;
^
s =

0

B

B

B

�

1

0

0

1

C

C

C

A

;
^
n =

^
n

0

=

0

B

B

B

�

0

1

0

1

C

C

C

A

;

(2.31)

^

l

0

=

0

B

B

B

�

sin �

lab

0

os �

lab

1

C

C

C

A

;
^
s

0

=

0

B

B

B

�

os �

lab

0

� sin �

lab

1

C

C

C

A

:

Aording to Eq. (2.21) there seems to be 16 x 16 = 256 possible initial-to-�nal

spin transitions in a NN sattering proess. Rotational, parity, time-reversal and isospin

invarianes (the last one together with parity invariane lead to spin invariane), however,

forbid many transitions and moreover ause some permitted transitions to be related to

eah other. Under these invarianes the sattering matrix M an be expressed in terms of

a few parameters alled Wolfenstein parameters [26, 23℄ (a; ;m; g; h), whih depend on

the magnitudes q

0

of �nal and q of initial relative momenta as well as the angle between

the two momenta q

0

and q

M = a+ (�

(1)

+ �

(2)

) �

^

N+m(�

(1)

�

^

N)(�

(2)

�

^

N)

+(g + h)(�

(1)

�

^

P)(�

(2)

�

^

P) + (g � h)(�

(1)

�

^

K)(�

(2)

�

^

K) (2.32)

a =

1

4

T

r

fMg (2.33)

 =

1

8

TrfM�

(1)

y

+M�

(2)

y

g (2.34)

m =

1

4

TrfM�

(1)

y

�

(2)

y

g (2.35)
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g =

1

8

TrfM�

(1)

x

�

(2)

x

+M�

(1)

z

�

(2)

z

g (2.36)

h =

1

8

Trf[�M�

(1)

x

�

(2)

x

+M�

(1)

z

�

(2)

z

℄ os � + [M�

(1)

x

�

(2)

z

+M�

(1)

z

�

(2)

x

℄ sin �g (2.37)

Note that these expressions for the Wolfenstein parameters are for the hosen xz-sattering

frame, see Eq. (2.31). The NN sattering observables an be alulated using M diretly

or the Wolfenstein parameters.

Finally, we lose this hapter by showing briey seven typial types of experiments

and the orresponding spin observables. Comprehensive desriptions of these experiments

an be found in Ref. [23℄. The experiments are denoted by the reations as

1: N2(N1; N1)N2 2: N2(N1;

~

N1)N2 3: N2(

~

N1; N1)N2 4: N2(

~

N1;

~

N1)N2

5: N2(

~

N1; N1)

~

N2 6: N2(N1;

~

N1)

~

N2 7:

~

N2(

~

N1; N1)N2;

where N1 and N2 stand for nuleon 1 (the projetile) and nuleon 2 (the target),

respetively, the little arrows over N1 or N2 mean that the orresponding nuleon is

polarized or that the polarization of that nuleon is measured. Let us take for example

the �fth experiment: N2(

~

N1; N1)

~

N2. This reation means that a polarized projetile

(

~

N1) is direted to an unpolarized target (N2) and �nally the polarization of the re-

oil nuleon (

~

N2) is measured. The polarization of the sattered nuleon (N1) is not

measured. Note that proesses 4 and 5 are only distinguishable for a np system.

In the �rst experiment the beam and target are unpolarized and no spin measurement

on the outgoing nuleons are made. One measures only the spin averaged ross setion

I

0

=

1

4

Tr

n

MM

y

o

= jaj

2

+ jmj

2

+ 2jj

2

+ 2jgj

2

+ 2jhj

2

: (2.38)

In the seond experiment the beam and target are unpolarized. The polarization

of the sattered nuleon is of interest and therefore after the proess one measures the

spin diretion of this nuleon. Aording to the general formula for spin observables

(Eq. (2.21)) the polarization P

0

=

D

�

(1)

E

=

D

�

(1)

�

(2)

0

E

of the sattered nuleon is

P

0

=

1

4I

0

Tr

n

MM

y

�

(1)

o

=
^
n

1

4I

0

Tr

n

MM

y

�

(1)

n

o

=
^
n

2Ref(a +m)

�

g

I

0

; (2.39)

where I

0

is the spin averaged ross setion given in Eq. (2.38). Parity invariane a�ets

the proess suh that the polarization must be normal to the sattering plane.
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The third experiment is to measure the asymmetry A

LR

de�ned as

A

LR

�

I

L

� I

R

I

L

+ I

R

; (2.40)

where I

L

= I(�; �) and I

R

= I(�; � + �) are the left-sattering and right-sattering ross

setions, respetively. A polarized beam is direted to an unpolarized target. Due to

parity invariane a ontribution to the ross setion arises only if the polarization is

normal to the sattering plane. The ross setion is

I =

1

4

3

X

�=0

D

�

(1)

�

E

i

Tr

n

M�

(1)

�

M

y

o

= I

0

+

1

4

P

i

�
^
nTr

n

M(�

(1)

�
^
n)M

y

o

(2.41)

and the left- and right-sattering ross setions are

I

L

= I

0

+

1

4

P

i

�
^
nTr

n

M(�

(1)

�
^
n)M

y

o

(2.42)

I

R

= I

0

�

1

4

P

i

�
^
nTr

n

M(�

(1)

�
^
n)M

y

o

: (2.43)

Therefore,

A

LR

=

P

i

�
^
nTr

n

M(�

(1)

�
^
n)M

y

o

4I

0

= P

i

�
^
nA

n

; (2.44)

with

A

n

=

1

4I

0

Tr

n

M(�

(1)

�
^
n)M

y

o

=

2Ref(a+m)

�

g

I

0

= P

0

: (2.45)

This quantity A

n

alled analyzing power is often denoted by A

y

, sine
^
n = ŷ for the

typial sattering frame given in Eq. (2.31).

In experiment 4 one starts with a polarized beam and an unpolarized target and �nally

measures the polarization of the sattered nuleon, P

f

=

D

�

(1)

E

IP

f

=

1

4

3

X

�=0

D

�

(1)

�

E

i

Tr

n

M�

(1)

�

M

y

�

(1)

o

= I

0

P

0

+

1

4

P

i

� Tr

n

M�

(1)

M

y

�

(1)

o

= I

0

n

^
n [P

0

+D(P

i

�
^
n)℄ +

^

l

0

h

A

0

(P

i

�

^

l) +R

0

(P

i

�
^
s)

i

+
^
s

0

h

A(P

i

�

^

l) +R(P

i

�
^
s)

io

: (2.46)
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Here we meet other spin observables, summarized in the depolarization tensor D

ij

, whih

is de�ned as

I

0

D

ij

�

1

4

Tr

n

M(�

(1)

�

^

j)M

y

(�

(1)

�

^

i)

o

; (2.47)

and the observables D;R;R

0

; A; A

0

appearing in the polarization

~

P

f

are

I

0

D � I

0

D

nn

=

1

4

Tr

n

M(�

(1)

�
^
n)M

y

(�

(1)

�
^
n)

o

= jaj

2

+ jmj

2

+ 2jj

2

� 2jgj

2

� 2jhj

2

(2.48)

I

0

R � I

0

D

s

0

s

=

1

4

Tr

n

M(�

(1)

�
^
s)M

y

(�

(1)

�
^
s

0

)

o

= (jaj

2

� jmj

2

� 4Refgh

�

g) os

�

2

� 2Imf(a�m)

�

g sin

�

2

(2.49)

I

0

R

0

� I

0

D

l

0

s

=

1

4

Tr

n

M(�

(1)

�
^
s)M

y

(�

(1)

�

^

l

0

)

o

= (jaj

2

� jmj

2

+ 4Refgh

�

g) sin

�

2

+ 2Imf(a�m)

�

g os

�

2

(2.50)

I

0

A � I

0

D

s

0

l

=

1

4

Tr

n

M(�

(1)

�

^

l)M

y

(�

(1)

�
^
s

0

)

o

= �(jaj

2

� jmj

2

� 4Refgh

�

g) sin

�

2

� 2Imf(a�m)

�

g os

�

2

(2.51)

I

0

A

0

� I

0

D

l

0

l

=

1

4

Tr

n

M(�

(1)

�

^

l)M

y

(�

(1)

�

^

l

0

)

o

= (jaj

2

� jmj

2

+ 4Refgh

�

g) os

�

2

� 2Imf(a�m)

�

g sin

�

2

: (2.52)

Experiment 5 is similar to experiment 4 and an be distinguished only in a np system.

One starts with a polarized beam and an unpolarized target but �nally one measures the

polarization of the reoil nuleon P

f

=

D

�

(2)

E

IP

f

=

1

4

3

X

�=0

D

�

(1)

�

E

i

Tr

n

M�

(1)

�

M

y

�

(2)

o

= I

0

P

0

+

1

4

P

i

� Tr

n

M�

(1)

M

y

�

(2)

o

= I

0

n

^
n [P

0

+D

t

(P

i

�
^
n)℄ +

^

l

0

h

A

t

(P

i

�

^

l) +R

t

(P

i

�
^
s)

i

+
^
s

0

h

A

0

t

(P

i

�

^

l) +R

0

t

(P

i

�
^
s)

io

(2.53)

P

0

=

1

4I

0

Tr

n

MM

y

(�

(2)

�
^
n)

o

=

2Ref(a+m)

�

g

I

0

: (2.54)

Here we have again new spin observables, summarized in the polarization-transfer tensor

K

ij

, whih is de�ned as

I

0

K

ij

�

1

4

Tr

n

M(�

(1)

�

^

j)M

y

(�

(2)

�

^

i)

o

; (2.55)
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and the observables D

t

; R

t

; R

0

t

; A

t

; A

0

t

appearing in the polarization P

f

are

I

0

D

t

� I

0

K

nn

=

1

4

Tr

n

M(�

(1)

�
^
n)M

y

(�

(2)

�
^
n)

o

= 2(Refam

�

g+ jj

2

+ jgj

2

� jhj

2

) (2.56)

I

0

R

t

� I

0

K

l

0

s

=

1

4

Tr

n

M(�

(1)

�
^
s)M

y

(�

(2)

�

^

l

0

)

o

= 2Ref(a+m)g

�

+ (a�m)h

�

g sin

�

2

+ 4Imfg

�

g os

�

2

(2.57)

I

0

R

0

t

� I

0

K

s

0

s

=

1

4

Tr

n

M(�

(1)

�
^
s)M

y

(�

(2)

�
^
s

0

)

o

= 2Ref(a+m)g

�

� (a�m)h

�

g os

�

2

� 4Imfg

�

g sin

�

2

(2.58)

I

0

A

t

� �I

0

K

l

0

l

= �

1

4

Tr

n

M(�

(1)

�

^

l)M

y

(�

(2)

�

^

l

0

)

o

= �2Ref(a +m)g

�

+ (a�m)h

�

g os

�

2

+ 4Imfg

�

g sin

�

2

(2.59)

I

0

A

0

t

� �I

0

K

s

0

l

= �

1

4

Tr

n

M(�

(1)

�

^

l)M

y

(�

(2)

�
^
s

0

)

o

= 2Ref(a+m)g

�

� (a�m)h

�

g sin

�

2

+ 4Imfg

�

g os

�

2

: (2.60)

Note the minus sign in the de�nitions for A

t

and A

0

t

. These are the de�nitions given in Cen-

ter for Nulear Studies Data Analysis Center (CNS DAC, http://gwda.phys.gwu.edu/).

We take these de�nitions sine later we ompare with experimental data from this site. In

Ref. [23℄ the de�nitions for A

t

and A

0

t

have the opposite sign. In ase of idential partiles

these expressions are the same as the ones given in Eqs. (2.48)-(2.52) if one replaes � by

� � � (see for instane [23℄).

In experiment 6 the beam and target are unpolarized. In the �nal state the spins of

the two outgoing nuleons are simultaneously measured

I

D

�

(1)

�

(2)

E

f

=

1

4

Tr

n

MM

y

�

(1)

�

(2)

o

= I

0

�

C

NN

^

N

^

N+ C

PP

^

P

^

P+ C

KK

^

K

^

K+ C

KP

(

^

P

^

K+

^

K

^

P)

�

: (2.61)

C

ij

is alled the spin orrelation parameter and is de�ned as

I

0

C

ij

�

1

4

Tr

n

MM

y

(�

(1)

�

^

i)(�

(2)

�

^

j)

o

: (2.62)

Aordingly, C

NN

; C

PP

; C

KK

; C

KP

are

I

0

C

NN

=

1

4

Tr

n

MM

y

(�

(1)

�

^

N)(�

(2)

�

^

N)

o

= 2(Refam

�

g+ jj

2

� jgj

2

+ jhj

2

) (2.63)

I

0

C

PP

=

1

4

Tr

n

MM

y

(�

(1)

�

^

P)(�

(2)

�

^

P)

o

= 2Ref(a�m)g

�

+ (a +m)h

�

g (2.64)

I

0

C

KK

=

1

4

Tr
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y

(�

(1)

�

^

K)(�

(2)

�

^

K)

o

= 2Ref(a�m)g

�

� (a +m)h

�

g (2.65)

I
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C

KP

=

1

4

Tr
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MM

y

(�

(1)

�

^

K)(�

(2)

�

^

P)

o

= �4Imfh

�

g: (2.66)
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It an be shown that C

PK

= C

KP

.

In the last experiment both the beam and target are polarized and no spin measure-

ments are made in the �nal state. One measures the ross setion

I =

1

4

X

�;�

D

�

(1)

�

�

(2)

�

E

i

Tr

n

M�

(1)

�

�

(2)

�
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y

o

= I

0

(1 + 2P
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ixx

A

xx

+ P

iyy

A

yy

+ P

izz

A

zz

� 2P

ixz

A

zx

) : (2.67)

The indies are for the sattering frame given in Eq. (2.31). P

iy

=

D

�

(1)

y

E

i

=

D

�

(2)

y

E

i

and

P

ikl

=

D

�

(1)

k

�

(2)

l

E

i

are the polarization and tensor polarization in initial state, respetively.

A

y

is the already shown analyzing power. The other observables are the spin orrelation

parameters A

ij

's, whih are also alled tensor analyzing powers de�ned as

A

ij

�

1

4I

0

Tr

n

M(�

(1)

�

^

i)(�

(2)

�

^

j)M

y

o

: (2.68)

Aordingly, A

xx

; A

yy

; A

zz

; A

zx

are

I

0
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� I

0

A

ss

=

1

4

Tr
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M(�

(1)

�
^
s)(�

(2)

�
^
s)M

y

o

= 2Ref(a�m)g

�

� (a+m)h

�

os �g+ 4Imfh

�

g sin � (2.69)

I
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yy

� I

0

A

nn

=

1

4

Tr

n

M(�

(1)

�
^
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(2)

�
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n)M

y

o

= 2(Refam
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2

� jgj

2

+ jhj

2

) = I
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NN

(2.70)
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zz

� I
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=

1

4

Tr

n

M(�

(1)

�

^

l)(�

(2)

�

^

l)M

y

o

= 2Ref(a�m)g

�

+ (a +m)h

�

os �g � 4Imfh

�

g sin � (2.71)

I

0

A

zx

� �I

0

A

ls

= �

1

4

Tr

n

M(�

(1)

�

^

l)(�

(2)

�
^
s)M

y

o

= �2Ref(a +m)h

�

g sin � � 4Imfh

�

g os � (2.72)

It an be shown that A

zx

= A

xz

. Again, note the minus sign in the de�nition for A

zx

,

whih is taken from CNS DAC. In Ref. [23℄ the de�nition for A

zx

has the opposite sign.
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Chapter 3

THREE-DIMENSIONAL

FORMULATION FOR

NUCLEON-NUCLEON

SCATTERING

In the standard partial wave deomposition for NN sattering (see for instane Chapter 2

of Ref. [25℄) a set of the Lippmann-Shwinger equations (LSE's) for the T-matrix is solved

for eah total angular momentum j of the two nuleons and one alulates up to j

max

,

where the alulation onverges, whih means that the ontribution from j = j

max

+ 1 to

the value of the investigated observable is relatively small or negligible. If both isospins

exist (np sattering) the set for eah j > 0 onsists of six one-dimensional LSE's: two sets

of two oupled equations plus two unoupled ones. For j = 0 there are only two unoupled

LSE's. The largest number of LSE's is then 6j

max

+ 2, whih applies to np sattering.

For example, with j

max

= 2 there are 14 LSE's in np sattering. For pp sattering the

number of LSE's is roughly half of that for a np system with the same j

max

. The higher

the energy involved in the proess the larger j

max

and the more LSE's are to be solved.

For instane, at 300 MeV nuleon laboratory energy one needs up to j

max

= 16 in order

to desribe the np di�erential ross setion suÆiently well [27℄.

In this hapter we formulate the tehnique to treat NN sattering without partial wave

deomposition. The goal is to have a small set of the LSE's for the T-matrix, so that in

ontrast to the standard partial wave alulations just desribed one solves only a �xed

small number of the LSE's regardless of the energy involved in the proess. We begin the

formulation with the de�nition of the basis state followed by disussions on its properties

and end up with the set of the LSE's. In order to alulate NN sattering observables, we

17
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onnet the T-matrix obtained from this set of the LSE's to the "physial" T-matrix more

appropriate for alulating observables. This "physial" T-matrix is given as funtion of

relative momentum and individual spin (quantized in the z-axis) and isospin quantum

numbers of the two nuleons. We also onnet this formulation to the standard partial

wave representation.

We do not use a spin representation with a �xed quantization axis, for example the

z-axis. Instead, the total spin of the two nuleons is given in its heliity representation,

where the quantization axis points in the diretion of their relative momentum. One

pratial advantage of working with heliity states is that these states are the eigen-

states of the heliity operator appearing in the NN potentials given in momentum spae.

NN potentials of one-boson-exhange type are onstruted diretly in terms of heliity

operators, but in this ase referring to the individual nuleons [28, 29℄. Another advantage

of using heliities is related to a relativisti sheme. Going to high energies one may en-

ounter relativisti e�ets. If the formulation is extended to a relativisti sheme then

using the heliity representation is less ompliated than using the spin representation

with a �xed quantization axis [30℄.

3.1 Momentum-Heliity Basis States

For our purpose we de�ne basis states alled the momentum-heliity basis states - a name,

whih is simply taken from the omponents of whih they are onstruted. To represent

a system of two nuleons the basis states must have some properties, i.e. they have to be

antisymmetri and have a de�nite parity. Here we present step by step the onstrution

of the basis states so that they have these properties. We follow with a disussion on their

other properties.

We onsider the heliity representation of the total spin S = S

1

+ S

2

rather than

that of individual spins S

1

and S

2

of the two nuleons. This has the advantages, that

instead of four we deal only with two spin states, i.e. the singlet (S = 0) and the triplet

(S = 1) states. Also, the total spin S is onserved (to a high degree of auray). Another

advantage is that if it is neessary to apply the formulation to systems of not spin-half

partiles the modi�ation is minor.

The total spin state j
^
zS�i of a two nuleon system with quantization axis along the

z-axis, and � being the total-spin projetion on this axis, has the form

j
^
zS�i =

X

m

1

m

2

C

�

1

2

1

2

S;m

1

m

2

�

�

�

�

�

�

^
z

1

2

m

1

�

�

�

�

�

^
z

1

2

m

2

�

; (3.1)

where C

�

1

2

1

2

S;m

1

m

2

�

�

is the Clebsh-Gordan oeÆient,

�

�

�
^
z

1

2

m

i

E

(i = 1,2) is the spin
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state of the individual nuleon quantized along the z-axis and m

i

being its spin projetion

on this axis. The heliity representation j
^
qS�i results from rotating the state j

^
zS�i into

the diretion of q, whih is the relative momentum of the two nuleons

j
^
qS�i = R(

^
q) j

^
zS�i : (3.2)

Note that the spin projetion � on the quantization axis is unhanged. Here R(
^
q) is the

rotation operator (see Refs. [31, 32℄ for detailed desriptions of this operator)

R(
^
q) = R(��0) = e

�iS

z

�

e

�iS

y

�

; (3.3)

where S

z

; S

y

are the z- and y-omponents of the total spin operator S, respetively, and

(�; �) determines the diretion of q. We would like to emphasize that di�erent from

Ref. [30℄, whih performs a rotation through three Euler angles (�; �; ) = (�; �;��),

we perform a rotation through the angles (�; �; ) = (�; �; 0), sine the third rotation

through the angle  = �� is unneessary and therefore  is set to be zero.

As the state j
^
zS�i is the eigenstate of the z omponent S �

^
z of the spin operator, the

state j
^
qS�i is the eigenstate of the heliity operator S �

^
q

S �
^
q j

^
qS�i = � j

^
qS�i : (3.4)

This an be shown as follows using the relation S �
^
q = R(

^
q)S �

^
zR

�1

(
^
q):

S �
^
q j

^
qS�i = R(

^
q)S �

^
zR

�1

(
^
q)R(

^
q) j

^
zS�i

= R(
^
q)S �

^
z j

^
zS�i

= �R(
^
q) j

^
zS�i

= � j
^
qS�i : (3.5)

The orthogonality and the ompleteness relations for this state j
^
qS�i are similar to the

ones for the state j
^
zS�i:

h
^
qS

0

�

0

j
^
qS�i = Æ

S

0

S

Æ

�

0

�

(3.6)

X

S�

j
^
qS�i h

^
qS�j = 1; (3.7)

whih an be veri�ed as follows:

h
^
qS

0

�

0

j
^
qS�i = h

^
zS

0

�

0

jR

�1

(
^
q)R(

^
q) j

^
zS�i

= h
^
zS

0

�

0

j
^
zS�i

= Æ

S

0

S

Æ

�

0

�

; (3.8)
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h
^
qS

0

�

0

j
^
qS�i =

X

S

00

�

00

h
^
qS

0

�

0

j
^
qS

00

�

00

i h
^
qS

00

�

00

j
^
qS�i

=

X

S

00

�

00

Æ

S

0

S

00

Æ

�

0

�

00

Æ

S

00

S

Æ

�

00

�

= Æ

S

0

S

Æ

�

0

�

: (3.9)

We begin to onstrut the momentum-heliity basis state, starting with a diret

produt of the momentum vetor state jqi and the heliity state j
^
qS�i

jq;
^
qS�i � jqi j

^
qS�i : (3.10)

This is justi�ed, sine we work in a nonrelativisti sheme. In this sheme the momentum

vetor state and the heliity state are independent of eah other, whereas in a relativisti

sheme the two states are related (see for example Ref. [30℄).

This starting state jq;
^
qS�i has no de�nite parity. It is not eigenstate of the parity

operator P , whih ats on the momentum vetor state

P jq;
^
qS�i = j�q;

^
qS�i : (3.11)

We de�ne from this state a di�erent state jq;
^
qS�i

�

, whih is parity eigenstate as

jq;
^
qS�i

�

�

1

p

2

(1 + �

�

P ) jq;
^
qS�i : (3.12)

Here �

�

= �1 are the parity eigenvalues as an be heked by applying P on this state

P jq;
^
qS�i

�

=

1

p

2

(P + �

�

) jq;
^
qS�i

= �

�

1

p

2

(�

�

P + 1) jq;
^
qS�i

= �

�

jq;
^
qS�i

�

: (3.13)

The antisymmetri property is introdued by taking into aount isospin and using

the permutation operator P

12

, whih exhanges the two nuleons' labels, meaning that

the permutation takes plae in all spae: momentum, spin and isospin. In momentum

spae P

12

ats as P in Eq. (3.11) whereas in spin and isospin spae the ations of P

12

are

P

12

j
^
qS�i = (�)

1+S

j
^
qS�i (3.14)

P

12

jti = (�)

1+t

jti : (3.15)

Here jti � jtm

t

i is the total isospin state of the two nuleons, where the total isospin t

equals 0 for singlet and 1 for triplet isospin states and m

t

is the isospin projetion along

its quantization axis, whih tells also the total eletri harge of the system. We suppress
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m

t

for simpliity, sine eletri harge is onserved. Now we de�ne the momentum-heliity

basis state jq;
^
qS�; ti

�a

as

jq;
^
qS�; ti

�a

�

1

p

2

(1� P

12

) jq;
^
qS�i

�

jti

=

1

p

2

�

1� �

�

(�)

S+t

�

jq;
^
qS�i

�

jti ; (3.16)

and the antisymmetriity of this state is obvious

P

12

jq;
^
qS�; ti

�a

=

1

p

2

(P

12

� 1) jq;
^
qS�i

�

jti

= � jq;
^
qS�; ti

�a

: (3.17)

The fator in Eq. (3.16) tells that parity, spin and isospin must meet the ondition

�

�

(�)

S+t

= �1.

We evaluate now the normalization of the state given in Eq. (3.16). For this purpose

we need the relation between j
^
qS�i and j�

^
qS�i. This relation an be derived using

the de�nition in Eq. (3.2) for j�
^
qS�i and the Wigner D-funtion (see Refs. [31, 32℄ for

detailed desription of the Wigner D-funtion)

D

S

�

0

�

(
^
q) = D

S

�

0

�

(��0) � h
^
zS�

0

jR(
^
q) j

^
zS�i

= h
^
zS�

0

j e

�iS

z

�

e

�iS

y

�

j
^
zS�i

= e

�i�

0

�

h
^
zS�

0

j e

�iS

y

�

j
^
zS�i

� e

�i�

0

�

d

S

�

0

�

(�); (3.18)

together with the following relation for the d-matries d

S

�

0

�

(�) (see Appendix A for the

derivation)

d

S

�

0

�

(� � �) = (�)

S+�

0

d

S

�

0

��

(�): (3.19)

We obtain

j�
^
qS�i = R(�

^
q) j

^
zS�i

=

X

�

0

j
^
zS�

0

i h
^
zS�

0

jR(�
^
q) j

^
zS�i

=

X

�

0

D

S

�

0

�

(�
^
q) j

^
zS�

0

i

=

X

�

0

e

�i(�+�)�

0

d

S

�

0

�

(� � �) j
^
zS�

0

i

=

X

�

0

e

�i(�+�)�

0

(�)

S+�

0

d

S

�

0

;��

(�) j
^
zS�

0

i

= (�)

S

X

�

0

D

S

�

0

;��

(
^
q) j

^
zS�

0

i

= (�)

S

j
^
qS � �i : (3.20)
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Now the normalization of the states given in Eq. (3.16) an be worked out as follows:

�

0

a

hq

0

;
^
q

0

S

0

�

0

; t

0

j q;
^
qS�; ti

�a

=

1

2

�

1� �

�

0

(�)

S

0

+t

0

� �

1� �

�

(�)

S+t

�

Æ

t

0

t

�

�

0

hq

0

;
^
q

0

S

0

�

0

j q;
^
qS�i

�

; (3.21)

with

�

0

hq

0

;
^
q

0

S

0

�

0

j q;
^
qS�i

�

=

1

2

hq

0

;
^
q

0

S

0

�

0

j (1 + �

�

0

P )(1 + �

�

P ) jq;
^
qS�i

=

1

2

hq

0

;
^
q

0

S

0

�

0

j (1 + �

�

0
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qS�i+ �

�

j�q;
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1
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hq
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�
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�
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+ �

�

0
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�

0

�

�

jq;
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1

2

f(1 + �

�
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�

�
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0

� q)Æ
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Æ
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�
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)Æ(q

0
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: (3.22)

Thus the normalization is

�
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a
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: (3.23)

Next we verify the ompleteness relation of the state de�ned in Eq. (3.16). Starting

with

X

S��t

Z

dqjq;
^
qS�; ti

�a

�

�a

hq;
^
qS�; tj = 1; (3.24)

with � being a fator not yet de�ned and using the normalization given in Eq. (3.23) the

ompleteness relation is veri�ed as follows:
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In the last equality we used again Eq. (3.23) and thus determine � =

1

4

. Consequently

the ompleteness relation reads

X

S��t

Z

dqjq;
^
qS�; ti

�a

1

4

�a

hq;
^
qS�; tj = 1: (3.26)

3.2 General Struture of the Potential Operator and

the Potential Matrix Element

As shown in Eq. (2.11) the NN potential is the input for the NN sattering alulations.

Therefore, before we ontinue to �nd the set of the LSE's in the momentum-heliity basis

derived in the previous setion we �gure out �rst the general struture of the potential

operator, whih �ts well to this momentum-heliity basis and investigate the potential

matrix element in this basis.

The NN potential is invariant under the operation of rotation, parity and time-reversal.

These invariane properties exlude many terms among all possible terms assumed as

omponents of a NN potential (see Ref. [25℄ for more eduative disussions). There are

six terms left [26℄ in whih the most general struture of a NN potential an be given, as

V (q

0

;q) � hq

0

jV jqi =

6

X

i=1

v

i

(q

0

; q; )W

i

: (3.27)

Here v

i

(q

0

; q; ) are salar (spin independent) funtions, whih depend on the magnitudes

of q

0

, q, and the angle between the two,  �
^
q

0

�
^
q, and W

i

(i = 1 to 6) are operators to

the spin states of the two nuleons suh that
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jW

i

jm
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i: (3.28)

The W

i

's are onstruted as ombinations of projeted-spin operators along some axes,
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given in terms of momentum ombinations with the exeption of W

1

, whih is unity:
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: (3.29)

Remember that these are the same operators appearing in the expression for the M-matrix

given in Eq. (2.32). (In that equation (2.32) and the whole Chapter 2 we attahed to the

Pauli matrix � the nuleon labels 1,2 as supersript for larity.)

In terms of W

i

's a NN potential is expressed in the individual spin operators S

i

=

1

2

�

i

(i = 1,2) of the two nuleons instead of in the total spin operator S =

1

2

(�

1

+ �

2

). The

latter one is more appropriate to the momentum-heliity basis state given in Eq. (3.16),

sine though algebraially possible, it is not pratial to arry out matrix elements of the

potential given in Eq. (3.27) in the momentum-heliity basis. Therefore, it is neessary

to de�ne a set of six operators onstruted from the heliity operators S �
^
q of whih

the momentum-heliity basis state is eigenstate. Suh operators have been de�ned in

Ref. [17℄. Here we onstrut similar operators denoted by 


i

:




1

= 1 


2

= S

2




3

= S �
^
q

0

S �
^
q

0




4

= S �
^
q

0

S �
^
q 


5

= (S �
^
q

0

)

2

(S �
^
q)

2




6

= S �
^
qS �

^
q

: (3.30)

In order to maintain the invariane properties of the potential the 


i

operators must be

linearly independent and have to be onneted to the W

i

's. The onnetion of the 


i

to

the W

i

operators is given as

W

i

=

X

j

A

ij




j

; (3.31)

where the transformation matrix A = fA

ij

g depends on q, q

0

and  (see Appendix B).

Expressed in the 


i

operators the general form of a NN potential is

V (q

0

;q) =

6

X

i;j=1

v

i

(q

0

; q; )A

ij




j

: (3.32)

Taking also into aount the spin states of the two nuleons, whih are now represented

as heliity states given in Eq. (3.2), and using Eq. (3.10) we have

V

S

�

0

�

(q

0

;q) � hq

0

;
^
q

0

S�

0

jV jq;
^
qS�i

= h
^
q

0

S�

0

jhq

0

jV jqij
^
qS�i

=

6

X

i;j=1

v

i

(q

0

; q; )A

ij

h
^
q

0

S�

0

j


j

j
^
qS�i: (3.33)
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The matrix elements h
^
q

0

S�

0

j


j

j
^
qS�i are easier to evaluate, as it is intended by

de�ning the 


i

operators, . These are

h
^
q

0

S�

0

j


1

j
^
qS�i = h

^
q

0

S�

0

j
^
qS�i (3.34)

h
^
q

0

S�

0

j


2

j
^
qS�i = h

^
q

0

S�

0

jS

2

j
^
qS�i

= S(S + 1) h
^
q

0

S�

0

j
^
qS�i (3.35)

h
^
q

0

S�

0

j


3

j
^
qS�i = h

^
q

0

S�

0

jS �
^
q

0

S �
^
q

0

j
^
qS�i

=

D

(S �
^
q

0

)

2

^
q

0

S�

0

j
^
qS�i

= �

02

h
^
q

0

S�

0

j
^
qS�i (3.36)

h
^
q

0

S�

0

j


4

j
^
qS�i = h

^
q

0

S�

0

jS �
^
q

0

S �
^
q j

^
qS�i

= h(S �
^
q

0

)
^
q

0

S�

0

jS �
^
q j

^
qS�i

= �

0

� h
^
q

0

S�

0

j
^
qS�i (3.37)

h
^
q

0

S�

0

j


5

j
^
qS�i = h

^
q

0

S�

0

j (S �
^
q

0

)

2

(S �
^
q)

2

j
^
qS�i

=

D

(S �
^
q

0

)

2

^
q

0

S�

0

�

�

� (S �
^
q)

2

j
^
qS�i

= �

02

�

2

h
^
q

0

S�

0

j
^
qS�i (3.38)

h
^
q

0

S�

0

j


6

j
^
qS�i = h

^
q

0

S�

0

jS �
^
qS �

^
q j

^
qS�i

= �

2

h
^
q

0

S�

0

j
^
qS�i (3.39)

All resulting expressions are simply the overlap of the heliity states de�ned in Eq. (3.2)

multiplied with a fator, whih is just a number. Using Eq. (3.18) and that d

j

m

0

m

(�) being

a real number this overlap h
^
q

0

S�

0

j
^
qS�i is

h
^
q

0

S�

0

j
^
qS�i =

X

M

h
^
q

0

S�

0

j
^
zSMi h

^
zSM j

^
qS�i

=

X

M

D

S�

M�

0

(�

0

�

0

0)D

S

M�

(��0)

=

S

X

M=�S

e

iM(�

0

��)

d

S

M�

0

(�

0

)d

S

M�

(�): (3.40)

For q points in z-diretion d

S

M�

(0) = Æ

M�

and this overlap beomes simple

h
^
q

0

S�

0

j
^
zS�i = e

i��

0

d

S

��

0

(�

0

): (3.41)

We evaluate now the matrix elements of the potential V in the momentum-heliity

basis �rstly without applying the general struture of the potential given in Eq. (3.32).

We assume that parity, spin and thus isospin are onserved (whih is valid to a high degree

of auray) and restrit ourselves to evaluate only

V

�St

�

0

�

(q

0

;q) �

�a

hq

0

;
^
q

0

S�

0

; tjV jq;
^
qS�; ti

�a

: (3.42)
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Using Eq. (3.16) and the parity invariane of V we obtain for these matrix elements

V

�St
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0

�

(q

0

;q) =

1

2

�

1� �
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(�)
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+ �

�

h�q

0

;
^
q

0

S�

0

jV jq;
^
qS�i

�

) jti

=

1

p

2

�

1� �
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�

+ �
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q

0
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0
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^
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�
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�

(�)
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^
q

0
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j hq

0

jV jqi

�

j
^
qS�i jti ; (3.43)

where

jqi

�

�

1

p

2

(jqi+ �

�

j�qi) : (3.44)

Similarly we ould also have gotten

V

�St

�
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�

(q

0
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p

2

�

1� �

�

(�)

S+t

�

htj h
^
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0

S�

0

j

�

hq

0

jV jqi j
^
qS�i jti : (3.45)

Using Eq. (3.43) together with Eqs. (3.20) and (3.44) we an onnet V

�St

��

0

�

(q

0

;q) to

V

�St

�

0

�

(�q

0

;q) as
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(�q

0

;q): (3.46)

In the same way we �nd

V

�St

�

0

;��

(q

0

;q) = �

�

(�)

S

V

�St

�

0

�

(q

0

;�q) (3.47)

V

�St

��

0

;��

(q

0

;q) = V

�St

�

0

�

(�q

0

;�q): (3.48)

Equations (3.46), (3.47) and (3.48) are denoted as the symmetry relations of the potential

matrix element in the momentum-heliity basis.

Inserting now the general struture of the potential given in Eq. (3.32) into Eq. (3.43)

we obtain

V

�St

�

0

�

(q

0

;q) =

�

1� �
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(�)
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�
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�
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^
qS�ig jti
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As an example, we work out in the following the 


4

term of the potential matrix element

denoted as V
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In the derivation we used Eqs. (3.37), (3.20) and (3.40).

We would like to exhibit the angular behavior of the potential matrix elements given

in Eq. (3.49). The salar funtions v

i

(q

0

; q; ) as well as A

ij

depend on , where

 =
^
q

0

�
^
q = os �

0

os � + sin �

0

sin � os(�

0

� �): (3.51)

Therefore, their azimuthal dependene is determined by os(�

0

��). The matrix elements

h
^
q

0

S�

0

j


j

j
^
qS�i depend on the azimuthal angles �

0

and � as shown in Eq. (3.40). Thus

the azimuthal dependene of the potential matrix elements an be desribed as

V
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�

n
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iM(�

0

��)
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: (3.52)

For the speial ase
^
q =

^
z the azimuthal dependene is only in the matrix elements

h
^
q

0

S�

0

j


j

j
^
qS�i as given in Eq. (3.41). Hene, the potential matrix elements redue to
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the simpler form

V

�St
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0
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0

; q
^
z) = e

i��

0

V

�St

�

0

�

(q

0

; q; �

0

): (3.53)

3.3 Lippmann-Shwinger Equation

In this setion we formulate the LSE for the T-matrix in momentum-heliity basis. Similar

to the potential matrix element given in Eq. (3.42) the T-matrix element in momentum-

heliity basis is de�ned as

T

�St

�

0

�

(q

0

;q) �

�a

hq

0

;
^
q

0

S�

0

; tjT jq;
^
qS�; ti

�a

: (3.54)

It is obvious that the symmetry relations given in Eqs. (3.46)-(3.48) for the potential

matrix element as well as the expressions in Eqs. (3.43) and (3.45) apply also to the

T-matrix element given in Eq. (3.54), sine these equations result from the nature of the

momentum-heliity basis and the invariane properties of the NN potential, whih indeed

are also possessed by the T-matrix:
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T

�St

�

0

�

(q

0

;q) =

p

2

�

1� �

�

(�)

S+t

�

htj h
^
q

0

S�

0

j

�

hq

0

jT jqi j
^
qS�i jti (3.56)

T

�St

��

0

;�

(q

0

;q) = �

�

(�)

S

T

�St

�

0

�

(�q

0

;q) (3.57)

T

�St

�

0

;��

(q

0

;q) = �

�

(�)

S

T

�St

�

0

�

(q

0

;�q) (3.58)
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Realling �rst the LSE given in Eq. (2.7), then using the ompleteness relation Eq. (3.26)

and the de�nitions in Eq. (3.54) for the T-matrix element and in Eq. (3.42) for the

potential matrix element, the LSE for the T-matrix element in momentum-heliity basis

takes the following form of an integral equation

T

�St

�

0

�

(q

0

;q) = V

�St

�

0

�

(q

0

;q) +

1

4

X

�

00

Z

dq

00

V

�St

�

0

�

00

(q

0

;q

00

)G

+

0

(E

q

)T

�St

�

00

�

(q

00

;q); (3.60)

where E

q

and G

+

0

(E

q

) are given in Eq. (2.12). As mentioned there are two total-spin

states of the two nuleons, i.e. singlet (S = 0) and triplet (S = 1) states. For the singlet

ase the LSE in Eq. (3.60) is one equation
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For the triplet ase there are 3 oupled equations to eah initial heliity � = �1; 0; 1:
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(3.62)

This oupled set of equations in Eq. (3.62) an be redued by means of the symmetry

properties of the potential and T-matrix elements.

Equations (3.47) and (3.57) hange the integral term with �
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= �1 in Eq. (3.60) as
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Thus it an be ombined with the integral term with �

00

= 1. This leads to
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Hene, for the ase S = 1 one needs only two instead of three oupled equations for

�

0

= 1; 0 for eah �. In addition Eqs. (3.47) and (3.58) allow us to onsider only � = 1; 0.

At this point we would like to summarize that for eah isospin (singlet or triplet) the

set of the LSE's onsists of �ve equations, i.e. one unoupled equation for S = 0 and two

sets (� = 1; 0) of two oupled equations (�

0

= 1; 0) for S = 1. In ontrast to the standard

partial wave tehnique the number of the LSE's to be solved is �xed regardless the energy

involved in the proess. There are 10 equations for np sattering and 5 equations for pp

sattering.

The LSE given in Eq. (3.64) is a set of three-dimensional integral equations. This

redued LSE is still subjet to further redution, whih makes use of the azimuthal

behavior of the potential matrix elements emphasized in the end of the preeeding setion

(Eqs. (3.52) and (3.53)).

We begin by assuming that the azimuthal behavior of the potential matrix elements

Eqs. (3.52) and (3.53) are arried over to the T-matrix elements. This is reasonable as
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an be seen in the in�nite series of the LSE in V

T = V + V G

0

V + V G

0

V G

0

V + ::: : (3.65)

The propagator G

0

has no angular dependene. Thus we make an ansatz for the solution

of the LSE given in Eq. (3.60) with
^
q =

^
z as
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We insert this into the right side of Eq. (3.60) together with Eqs. (3.52) and (3.53) to

obtain
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With respet to �

00

the integrand is periodial with the period being 2�. Thus we an set

�

0

= 0 just for the �

00

-integration and get
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This veri�es the orretness of the ansatz in Eq. (3.66).

Now we return to Eq. (3.67) and remove the fator e

i��

0

on both sides of the equation.

This leads to
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where we restored the original notation V

�St

�
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) for the potential matrix elements in

the integral kernel. This is a LSE for the two-dimensional T-matrix T
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). The

solution of this equation has no azimuthal dependene and hene the �
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-integration an

be arried out independently. De�ning
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we an write the LSE for the two-dimensional T-matrix as
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Note that in evaluating the integral in Eq. (3.70) we again set �

0

= 0 as explained in the

ontext of Eq. (3.68). The driving term of this equation is a speial ase of Eq. (3.70) for
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Inserting all these results into Eqs. (3.61) and (3.64) gives
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(3.73)

This is the �nal form of the set of the LSE's for NN sattering in the momentum-heliity

basis.

3.4 Connetion to the Physial T-Matrix Repre-

sentation

In the preeding setion we have derived the set of the LSE's Eq. (3.73) for the

T-matrix. The T-matrix elements resulting from that equation are in the momentum-

heliity basis and therefore not diretly appropriate for alulating observables, whih are

then ompared to experimental data. We need the T-matrix elements with respet to the

states given as
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qi ; (3.74)

where �

1

; �

2

and m

1

; m

2

are the magneti isospin and spin quantum numbers, respetively.

The T-matrix elements in these states are then given as
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whih we refer to as the physial T-matrix elements. For example, the spin-averaged NN

di�erential ross setion is alulated as
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Thus a onnetion between the physial T-matrix elements and the T-matrix elements in

the momentum-heliity basis is required, espeially the one with
^
q =

^
z.

The physial T-matrix elements given in Eq. (3.75) have to be expressed in terms of

T
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;q) by inserting into that equation the ompleteness relation given in Eq. (3.26)
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Eq. (3.77) an be evaluated to give
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where the following relation for the Clebsh-Gordan oeÆient has been used
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Note that if neessary we write the Clebsh-Gordan oeÆient as C (j
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as given in Eq. (3.79) we derive the expression for the physial T-matrix elements in terms

of the T-matrix elements in the momentum-heliity basis as
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We have used the T-matrix properties given in Eqs. (3.57) - (3.59) and the relation for

the d-matries given in Eq. (3.19) to arrive to this result.

Next using Eq. (3.66) and d

S

�

0

�

(0) = Æ

�

0

�
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where in addition we have set q

0

= q, sine observables are measured on-shell.

3.5 Connetion to the Standard Partial Wave Re-

presentation

After developing a new tehnique to treat NN sattering it is natural to test and to

ompare it to the well established, standard partial wave deomposition. Though we an

ompare our alulations diretly to experimental data, it is also interesting to have a

omparison on this level. Besides there are not always experimental data available to



3.5 Connetion to the Standard Partial Wave Representation 35

ompare with. Therefore, we make a onnetion to the standard partial wave repre-

sentation. For simpliity we set q

0

= q from the beginning.

The well known on-shell partial wave projeted T-matrix element is de�ned as

T
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where l and l

0

are the initial and �nal angular momenta, respetively, and j is the total

angular momentum (J = L + S). For simpliity we have suppressed the isospin projetion

m

t

along its quantization axis (see the text following Eq. (3.15)). The states jq(lS)jmti,

whih are alled the partial wave basis, are given as
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The states ful�ll the ompleteness relation
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The idea is to express the partial wave projeted T-matrix element T
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(q) given in

Eq. (3.83) in terms of the T-matrix elements T
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shifts alulated using these partial wave projeted T-matrix elements to those resulting

from the standard partial wave alulations. Performing a onnetion the opposite way is

diÆult, sine in obtaining T

�St

�

0

�

(q; q; �

0

) from T

Sjt

l

0

l

(q) we need ideally an in�nite number of

partial waves. Nevertheless we work out both expressions. The �rst one is the expression

for T

�St

�

0

�

(q; q; �

0

) in terms of T

Sjt

l

0

l

(q). Using Eq. (3.82) this expression an be veri�ed, sine

the physial T-matrix elements in the partial wave representation is well known. The

seond expression is that for T

Sjt

l

0

l

(q) in terms of T

�St

�

0

�

(q; q; �

0

), whih will be derived from

the �rst expression.

To get the �rst expression we insert the ompleteness relation given in Eq. (3.86) twie

into Eq. (3.54). It turns out that the overlap hq

0

(lS

0

)jm jq;
^
qS�i need to be worked out

�rst. Using Eqs. (3.18) and (3.84) together with the following projetion

hq

0

l� jqi =

Æ(q

0

� q)

q

0

q

hl� j
^
qi =

Æ(q

0

� q)

q

0

q

Y

�

l�

(
^
q) (3.87)

this gives

hq

0

(lS

0

)jm jq;
^
qS�i =

X

�

C(lS

0

j;�;m� �) hq

0

l� jqi hS

0

m� � j
^
qS�i

=

X

�

C(lS

0

j;�;m� �)

Æ(q

0

� q)

q

0

q

Y

�

l�

(
^
q)

� Æ

S

0

S

e

�i(m��)�

d

S

m��;�

(�): (3.88)



36 3 Three-Dimensional Formulation for Nuleon-Nuleon Sattering

Now we derive the expression for the on-shell T-matrix T
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Using the relations
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(see Appendix A for the derivation of Eq. (3.92)) and an addition theorem for D-funtions
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it is straightforward to show that
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where in the last step we have applied
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and Eq. (3.92). Thus
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Finally, using Eq. (3.66) we obtain the expression for T

�St

�

0

�

(q; q; �

0

) in terms of T

Sjt

l

0

l

(q) as

T

�St

�

0

�

(q; q; �

0

) =

1

2

�

1� �

�

(�)

S+t

�

X

l

0

lj

T

Sjt

l

0

l

(q)

�

1 + �

�

(�)

l

0

� �

1 + �

�

(�)

l

�

�

s

2l

0

+ 1

4�

C(l

0

Sj; 0�

0

)d

j

��

0

(�

0

)

s

2l + 1

4�

C(lSj; 0�): (3.97)

Now we perform a test to this expression. We insert this equation into the physial

T-matrix elements Eq. (3.82) with the aim to get the partial wave representation for the

physial T-matrix elements.
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Here S
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In the last two steps of Eq. (3.98) we have used the relation

D

j�

�

0

�

0

(�

0

�

0

0)C(l

0

Sj; 0�

0

) =

X

n

D

l

0

�

n0

(�

0

�

0

0)D

S�

�

0

�n;�

0

(�

0

�

0

0)C(l

0

Sj;n;�

0

� n) (3.100)

and an orthonormality relation of D-funtions
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Using Eq. (3.91) we end up with the standard form of the physial T-matrix elements in

the partial wave representation
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This veri�es the expression given in Eq. (3.97).

We work out the reversal expression of Eq. (3.97), whih is aomplished in the

following way: we perform on the left side of Eq. (3.97) some algebra the e�ets of whih

remove all fators and terms on the right side but the partial wave projeted T-matrix
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Applying this relation to Eq. (3.97) anels the summation over j and removes the

d-matries
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Next we eliminate the Clebsh-Gordan oeÆients and at the same time anel the double

summations over l and l

0

by means of the orthogonality relation

X

m

1

C(j

1

j

2

j;m

1

; m�m

1

)C(j

1

j

2

j

0

;m

1

; m�m

1

) = Æ

jj

0

(3.105)

together with another relation for the Clebsh-Gordan oeÆients, namely
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as an be veri�ed in the following algebra
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Replaing j

0

,

�

l and

�
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0

with j, l and l

0

respetively for better notations this gives the �nal

expression

T

Sjt

l

0

l

(q) =

�

2

p

2l

0

+ 1

p

2l + 1

2j + 1

�

X

�

0

�

C(l

0

Sj; 0�

0

)C(lSj; 0�)

Z

1

�1

d os �

0

d

j

��

0

(�

0

)T

�St

�

0

�

(q; q; �

0

): (3.108)



3.5 Connetion to the Standard Partial Wave Representation 41

We took into aount that parity, total spin and isospin are onstrained by �

�

(�)

S+t

= �1

and the orbital angular momenta l and l

0

by �

�

(�)

l

0

= �

�

(�)

l

= 1.

One the partial wave projeted T-matrix elements are alulated, we an onnet

them to the partial wave projeted S-matrix elements using the relation given in Eq. (3.99).

The partial wave projeted S-matrix elements are parameterized by the standard partial

wave phase shifts [33, 34℄. Thus we an alulate phase shifts and ompare them with

those resulting from the standard partial wave alulations.
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Chapter 4

APPLICATION TO NN

SCATTERING

In the last hapter we formulated a three-dimensional (3D) approah to alulate NN

sattering without employing partial wave (PW) deomposition. The pratial appliation

of this formulation inludes solving the set of LSE's given in Eq. (3.73) for the T-matrix

elements T

�St

�

0

�

(q

0

; q; �

0

). Then we alulate observables, whih we ompare to experimental

data. To hek the new 3D formulation for orretness, it is also important to perform a

omparison with the standard PW alulations. Here we show results of our alulations

and refer to Appendix E for the numerial realization.

For this appliation we �rst need to hoose NN potential models. These provide the

input to the LSE's given in Eq. (3.73), when expressed in the appropriate form. Before

showing results of our alulations, we present our hoie of NN potentials and show the

transformation from the original expressions to the ones indiated by Eq. (3.32). The

�nal expressions an be found in Appendies C and D.

4.1 The NN Potentials

Any NN potential given in operator form an be used for the 3D tehnique formu-

lated in Chapter 3. We hoose two modern realisti NN potentials, eah representing a

distint ategory, namely the one-boson-exhange potential (OBEP) derived from a meson

theoretial approah and a phenomenologial potential based on the quantum mehanial

symmetries of the NN system and the pion exhange. These types of NN potentials are

well developed and have been used in few-body nulear physis for several deades, in the

sense that these models give very good quantitative results.
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4.1.1 One-Boson-Exhange Potential

Conventionally an OBEP is worked out in the framework of quantum �eld theory, de-

rived from the Bethe-Salpeter equation, and approximated to a purely spatial form by

means of, e.q., the Blankenbeler-Sugar redution (see Ref. [35, 21℄). These potentials

an be traed bak to Yukawa's suggestion [36℄ in 1935 that two nuleons interat by ex-

hanging a mediating partile alled meson, and supported by the disoveries of � meson

(pion) and other heavier mesons. The OBEP's are based on meson-exhanges of pseu-

dosalar, salar and vetor types, ontributing to di�erent parts of the nulear fore. For

example, the pseudosalar mesons ontribute to the tensor fore. In addition, as

suggested by Taketani, Nakamura and Sasaki [37℄ the nulear fore is divided into three

parts orresponding to the long, attrative intermediate and repulsive short range inter-

ations. Hene mesons of di�erent masses are inluded, sine the range of the fore an

be related to the meson mass. For this purpose, �titious mesons of mass between 400

- 800 MeV suh as � in Ref.[35℄ and � in Ref.[38℄ may be employed to represent the

intermediate range attration. Multiple-meson exhanges between two nuleons are also

taken into aount [6, 35℄. Fortunately, for pratial purposes the one-boson-exhange is

a qualitatively and quantitatively approximation for the NN fore. The parameters of an

OBEP are the meson-nuleon oupling onstants and the uto�s, ouring in strong form

fators, representing the �nite size of the nuleon. The oupling onstants are usually

extrated from meson deay (see Ref. [39℄ and http://pdg.lbl.gov/) and the uto�s are

�xed to the NN data. In ase of the �titious mesons the masses are also adjusted. A

review on the OBEP's is given in Ref. [21℄.

Among the best OBEP's are the Nijmegen I and II [38℄ and the CD-Bonn [40℄ po-

tentials, whih are harge-dependent and thus distinguish between pp, nn and np inter-

ations. These potentials are �tted to np as well as pp data below 350 MeV laboratory

energy with �

2

=datum � 1. This energy is already above the pion prodution threshold

(� 286 MeV laboratory energy). To ahieve this lose-to-unity �

2

=datum the parame-

terization is made for eah partial wave. Hene, despite their sophisations these potentials

annot be used in the 3D tehnique.

We hoose an OBEP given as tree-level Feynman diagrams and thus a simultane-

ous parameterization of all partial waves, the Bonn OBEP [35℄ in the parameterizing of

Bonn-B [21℄. This potential is well �tted to np data for both 2N total isospin singlet and

triplet up to about 325 MeV laboratory energy, in whih only the �-meson mass is di�erent

for eah isospin. Being �tted only to np data the potential assumes a harge-independent

NN interation.
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The Bonn OBEP has the form

V (q

0

;q) = V

ps

(q

0

;q) + V

s

(q

0

;q) + V

v

(q

0

;q); (4.1)

where the labels ps; s; v stand for pseudosalar, salar and vetor, respetively, orres-

ponding to the type of the exhanged mesons. These pseudosalar, salar and vetor

potentials operators are given as

V

ps

(q

0

;q) =

g

2

ps

(2�)

3

r

m

E

0

r

m

E

�u(q

0

)

5

u(q)�u(�q

0

)

5

u(�q)

F

2

ps

[(q

0

� q)

2

℄

(q

0

� q)

2

+m

2

ps

(4.2)

V

s

(q

0

;q) = �

g

2

s

(2�)

3

r

m

E

0

r

m

E

�u(q

0

)u(q)�u(�q

0

)u(�q)

F

2

s

[(q

0

� q)

2

℄

(q

0

� q)

2

+m

2

s

(4.3)

V

v

(q

0

;q) =

F

2

v

[(q

0

� q)

2

℄

(q

0

� q)

2

+m

2

v

r

m

E

0

r

m

E

1

(2�)

3

h

g

2

v

�u(q

0

)

�

u(q)�u(�q

0

)

�

u(�q)

+

f

2

v

4m

2

n

4m

2

�u(q

0

)

�

u(q)�u(�q

0

)

�

u(�q)

�2m �u(q

0

)

�

u(q)�u(�q

0

)[(E

0

� E)(g

0

�

� 

�
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2
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0

2
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0
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1
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0
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�
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1

+ p

0
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)

�
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0

)[(E

0

� E)(g

0

�

� 
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0

) + (p

2

+ p

0

2

)

�
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o

+

g

v

f

v

2m

f4m �u(q

0

)

�
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0

)

�

u(�q)

��u(q

0

)

�
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0
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� E)(g
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�
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2

+ p

0

2

)

�
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� �u(q

0
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0

) + (p

1

+ p

0

1

)

�

℄u(q)�u(�q

0

)

�

u(�q)
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: (4.4)

Here m stands for the nuleon mass and m

�

(� = ps; s; v) for the orresponding meson

masses. In the vetor potential one has 4-momenta (p

1

+ p

0

1

)

�

= (E + E

0

;q + q

0

) and

(p

2

+ p

0

2

)

�

= (E + E

0

;�q� q

0

). The form fator F

2

�

[(q

0

� q)

2

℄ takes the form:

F

2

�

[(q

0

� q)

2

℄ =

 

�

2

�

�m

2

�

�

2

�

+ (q

0

� q)

2

!

2n

; (4.5)

with the power onstant n being 1 for the pseudosalar and salar potentials and 2 for the

vetor potential. The mesons' masses m

�

, the oupling onstants g

�

, f

v

and the uto�s

�

�

are given in Table 4.1, taken from [21℄.

This OBEP has to be expressed in a form of Eq. (3.32), that is in terms of the




i

operators given in Eq. (3.30). This is done as follows. The OBEP's operators are

ombinations of �

1

�
^
q, �

2

�
^
q, �

1

�
^
q

0

and �

2

�
^
q

0

ontained in the Dira spinors. These

operators an be expressed in terms of the W

i

operators given in Eq. (3.29). It turned

out that it is easier to express �rst the W

i

operators in terms �

1

�
^
q, �

2

�
^
q, �

1

�
^
q

0

and

�

2

�
^
q

0

. One an invert the resulting expressions and apply them to the OBEP. Next by
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Table 4.1: Parameters for the Bonn-B potential. The shown � parameters are for NN

total isospin 0. For NN total isospin 1 the parameters are m

�

= 720 MeV,

g

2

�

4�

= 18:3773,

�

�

= 2 GeV and n = 1.

meson m

�

[MeV℄

g

2

�

4�

f

�

g

�

�

�

[GeV℄ n

� 138.03 14.4 1.7 1

� 548.8 3 1.5 1

Æ 983 2.488 2 1

� 550 8.9437 1.9 1

� 769 0.9 6.1 1.85 2

! 782.6 24.5 0 1.85 2

means of Eq. (3.31), whih relates the W

i

operators with 


i

operators, the expression

of the OBEP in terms of the 


i

operators will result. For all this purpose one an use

symboli manipulation pakages suh as Mathematia. In Appendix C the potential �nal

expressions in terms of the W

i

as well as 


i

operators are presented.

4.1.2 Phenomenologial Potential

The development of the phenomenologial NN potentials started in the 1950's to provide

a simple desription of the nulear fore, whih then may serve as an input for nulear al-

ulations [21℄. The phenomenologial potentials are onstruted in terms of operators as

ombinations of spin, isospin and orbital angular momentum operators (in on�guration

spae) representing proesses ouring (or assumed to our) in the NN interation. For

a �xed isospin state a phenomenologial potential is a sum of six independent opera-

tor terms, governed by translational, Galilean, rotational, spae reetion, time reversal

invarianes, symmetry ondition and hermitiity [41℄. The salar funtions multiplying

with the operators are di�erent from one potential to another. The appearanes of the

operators may also be slightly di�erent as shown, for example, in Ref. [38℄ for Nijmegen

Group's potentials and Refs.[9, 20℄ for the Argonne potentials. However, these sets of

operators are related one to another, as demonstrated for instane by the two sets of

operators W

i

and 


i

, given in Eqs. (3.27) and (3.32). Phenomenologial potentials also

ontains the one-pion-exhange (OPE) potential as long range part, sine the OPE is a

well established onept for the nulear fore. The phenomenologial potentials use a

larger number of parameters to be �tted to data, ompared to the meson theoretial ones.

The harge dependent potentials Reid93 [38℄ and Argonne 18 (AV18) [20℄ belong to
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the best �tted phenomenologial potentials [42℄. Both are �tted to pp as well as np data

below 350 MeV laboratory energy and showing �

2

=datum � 1. In addition the AV18

potential is �tted also to low-energy nn sattering parameters and deuteron properties.

The Reid93 potential is parameterized for eah partial wave, whereas the parameterization

of the AV18 is given for all partial waves. Hene, we hoose the AV18 potential for our

alulations.

The AV18 potential is given originally in on�guration spae and has the general form

V (r) = V

EM

(r) + V

�

(r) + V

R

(r); (4.6)

where r is the relative position between the two nuleons. The potential V

EM

(r)

represents an eletromagneti part, whih is exluded in this work. The harge dependent

potentials V

�

(r) and V

R

(r) represent the OPE part and the intermediate- and short-range

phenomenologial part, respetively. The OPE part has standard spin-spin and tensor

operator terms

V

�

(r) = V

�

ss

(r)�

1

� �

2

+ V

�

t

(r)S

12

; (4.7)

where S

12

denotes the tensor operator and the radial funtions V

�

ss

(r) and V

�

t

(r) ontain

exponential uto�s. The V

R

(r) part is expressed as a sum of entral, tensor, spin-orbit,

L

2

, and quadrati spin-orbit terms abbreviated as ; t; ls; l2; ls2, respetively, in di�erent

spin and iso-spin (St) states:

V

R

St

(r) = V



St

(r)1+ V

t

St

(r)S

12

+ V

ls

St

(r)L � S+ V

l2

St

(r)L

2

+ V

ls2

St

(r)(L � S)

2

: (4.8)

The oupling onstant used in V

�

(r), the radial funtions and the 40 non-zero parameters

used in V

R

(r) are given in Ref. [20℄.

For applying this potential in our alulations, we need to have V

�

(q

0

;q) and V

R

(q

0

;q)

given as

V

�

(q

0

;q) = V

�

ss

(q

0

;q) + V

�

t

(q

0

;q) (4.9)

V
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;q) = V
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;q) + V
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St

(q

0

;q) + V

l2
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(q

0

;q) + V

ls2

St

(q

0

;q); (4.10)

whih are the Fourier transform of V

�

(r) and V

R

(r), respetively. We obtain expliitly

V

�

ss

(q

0

;q) =

1

2�

2

�

1

� �

2

Z

1

0

drr
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�
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1
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V
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1
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�
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2
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V

ls
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(�r)V

ls2
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where � � jq

0

� qj. The resulting operators an be easily represented in terms of the W

i

operators and next by means of Eq. (3.31) in the 


i

operators. The expressions in these

two operators W

i

and 


i

are given in Appendix D.

4.2 Results and Disussions

In this setion we present the results of our alulations for phase shifts, T-matrix elements

and observables.

In Subsetion 4.2.1 we show some NN phase shifts resulting from our 3D alulations

(Æ

3D

) and those from the standard PW alulations (Æ

PW

). The Æ

3D

are obtained from

Eq. (3.99) together with Eq. (3.108). Equation (3.99) relates between PW projeted

S-matrix and T-matrix and Eq. (3.108) onnets PW projeted T-matrix with T-matrix

in the momentum-heliity basis.

In Subsetion 4.2.2 we present the 2D half-on-the-energy-shell (half-shell) behavior of

the T-matrix elements T

�St

�

0

�

(q

0

; q; �

0

) in the momentum heliity basis. Two-dimensional

behavior means the angular and momentum dependene. We ompare this behavior of

T

�St

�

0

�

(q

0

; q; �

0

) resulting from the two hosen NN potential models Bonn-B and AV18, whih

di�er from eah other in their nature. The 2D on-the-energy-shell (on-shell) behavior of

the T-matrix elements

a

h�

1

�

2

m

0

1

m

0

2

q

0

jT j�

1

�

2

m

1

m

2

qi

a

in the physial representation is also

shown for a large range of energies up to 1 GeV laboratory energy.

Subsetion 4.2.3 serves like Subsetion 4.2.1 as a test. First we show omparisons

with the standard PW alulations, in whih Æ

3D

are used. Next we show omparisons

with data at higher energy beyond the �-threshold for NN system as well as beyond the

highest energy, where the two NN potentials Bonn-B and AV18 are �tted. We present

our alulations together with the partial-wave analyses (PWA) taken from the CNS DAC

(http://gwda.phys.gwu.edu/), whih is also the soure of the experimental data.
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4.2.1 Phase Shifts

Here we ompare the NN Æ

3D

with the NN Æ

PW

for projetile energies 100 and 300 MeV.

For the Bonn-B potential the phase shifts are given in Table 4.2. The agreement between

the two alulations, both performed in momentum spae, is exellent. For the AV18

potential we give the phase shifts in Table 4.3. In this ase the PW alulation is performed

in oordinate spae [43℄. The agreement is also very good, though not as exellent as in

the ase of Bonn-B. The soure of this slight disrepany is presumably twofold. First,

the disrepany may have been aused by imperfetions in the numerial realization of the

Fourier-Bessel transformations of the AV18's omponent funtions given in Eqs. (4.11)-

(4.17). Seond, there probably our inauraies in the solution of the LSE's of Eq. (3.73),

desribed in the following. See also Appendix E Setion E.1 for desriptions and values.

Solving the integral equation in Eq. (3.73) requires an evaluation of the potential

funtions on a grid of size n

�

00

� (n

q

00

� n

�

00

)

2

, where n

�

00

; n

q

00

; n

�

00

are the numbers of

�

00

-, q

00

-, �

00

-integration points. For eonomial reasons we prepare the potential funtions

one on a �ne grid for � = jq

00

� q

0

j and obtain the value at points atually needed in the

alulation via interpolation. The grid is prepared within a range of 0 � � � 300 fm

�1

,

with the resolution being 0.2 fm

�1

for 0 � � � 10 fm

�1

, 0.5 fm

�1

for 10 � � � 50 fm

�1

and 2.5 fm

�1

for 50 � � � 300 fm

�1

. Using values for the numbers of integration points

given in Setion E.1 the resolution of atual grid for � is roughly 0.1

�4

fm

�1

, obtained

from 2q

3

=(n

�

00

� (n

q

00

� n

�

00

)

2

), where q

3

= 150 fm

�1

is the upper limit in q

00

-integration

for the AV18 potential. This resolution is muh smaller than the one of the grid for

interpolation. Thus, this proedure may leads to larger numerial errors ompared to a

diret evaluation of the algebrai expressions in the ase for Bonn-B. The di�erenes an

be learly seen when omparing Tables 4.2 with 4.3. Note that in both ases a omparable

grid for the T-matrix elements is used. For the interpolation one an pratially use any

reliable method. We use the modi�ed ubi hermite splines [44℄, whih is aurate yet

pratial.

4.2.2 T-Matrix

Now we show the 2D behavior of the half-shell T-matrix elements T

�St

�

0

�

(q; q

0

; �) as the

solution of Eq. (3.73). Here q; � denote the outgoing momenta in the x-z-plane and q

0

denotes the magnitude of the inoming momentum in the z diretion. These are displayed

in Figs. 4.1-4.7, all for 300 MeV laboratory energy, orresponding to q

0

= 375 MeV/. In

the �gures T

�St

�

0

�

(q; q

0

; �) are denoted by T for S = 0 and by T

�

0

�

for S = 1, where �

0

and

� take values of 0, 1. Due to the symmetry of the potential, and hene the T-matrix,
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Table 4.2: Comparison of the NN phase shifts obtained from our 3D formulation (Æ

3D

)

with those from the standard PW alulations in momentum spae (Æ

PW

) for the Bonn-B

potential at 100 and 300 MeV laboratory energies.

E

lab

= 100 MeV E

lab

= 300 MeV

2S+1

L

J

Æ

3D

Æ

PW

Æ

3D

Æ

PW

1

S

0

25.1928 25.1929 -8.1755 -8.1756

3

P

0

9.8046 9.8046 -11.4799 -11.4799

1

P

1

-16.3131 -16.3451 -28.6946 -28.8747

3

P

1

-13.4677 -13.4677 -26.3800 -26.3800

3

S

1

41.9858 41.9870 4.0667 4.0676

3

D

1

-12.9847 -12.9846 -23.7182 -23.7181

"

1

-2.2360 -2.2357 -4.0268 -4.0265

1

D

2

3.3411 3.3411 7.4888 7.4888

3

D

2

17.6710 17.6710 25.3616 25.3617

3

P

2

11.7356 11.7356 17.3981 17.3981

3

F

2

0.7705 0.7705 0.5236 0.5238

"

2

2.8402 2.8402 2.0166 2.0166

1

F

3

-2.4397 -2.4397 -5.5865 -5.5865

3

F

3

-1.6484 -1.6484 -4.0097 -4.0097

3

D

3

0.4203 0.4855 2.5719 2.5720

3

G

3

-1.0105 -1.0105 -4.4051 -4.4051

"

3

-3.6604 -3.6604 -7.2233 -7.2233

1

G

4

0.4092 0.4092 1.3556 1.3556

3

G

4

2.2624 2.2624 7.3000 7.3000

3

F

4

0.4203 0.4203 2.4491 2.4491

3

H

4

0.1082 0.1082 0.5077 0.5077

"

4

0.5575 0.5575 1.5509 1.5509
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Table 4.3: Comparison of the NN phase shifts obtained from our 3D formulation (Æ

3D

)

with those from the standard PW alulations in on�guration spae (Æ

PW

) [43℄ for the

AV18 potential at 100 and 300 MeV laboratory energies.

E

lab

= 100 MeV E

lab

= 300 MeV

2S+1

L

J

Æ

3D

Æ

PW

Æ

3D

Æ

PW

1

S

0

25.99 25.94 -4.62 -4.60

3

P

0

8.69 8.69 -11.05 -11.06

1

P

1

-14.19 -14.20 -26.18 -26.28

3

P

1

-13.06 -13.07 -28.38 -28.49

3

S

1

43.69 43.56 8.15 8.16

3

D

1

-12.08 -12.09 -24.80 -24.90

"

1

-2.49 -2.49 -4.38 -4.39

1

D

2

3.81 3.81 9.45 9.44

3

D

2

17.14 17.10 25.11 25.02

3

P

2

11.02 11.00 16.96 16.91

3

F

2

0.67 0.67 0.77 0.76

"

2

2.70 2.70 2.21 2.21

1

F

3

-2.23 -2.23 -4.87 -4.88

3

F

3

-1.35 -1.35 -2.51 -2.51

3

D

3

1.61 1.61 5.22 5.21

3

G

3

-0.93 -0.93 -4.19 -4.20

"

3

-3.50 -3.50 -7.17 -7.16

1

G

4

0.40 0.40 1.42 1.42

3

G

4

2.22 2.22 7.35 7.34

3

F

4

0.45 0.45 2.75 2.74

3

H

4

0.07 0.07 0.31 0.31

"

4

0.51 0.51 1.54 1.54
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it is suÆient to onsider only these two values of heliity. The notations Re and Im

have their usual meaning as indiating real and imaginary parts. Figures 4.1-4.5 show the

Bonn-B potential and Figs. 4.6-4.7 the AV18 potential ases.

Figure 4.1 shows T

�St

�

0

�

(q; q

0

; �) for S = 0. On the left side we see the parity-even and

on the right side the parity-odd ase, whih are distinguished by the symmetri and the

antisymmetri angular behavior of the T-matrix elements. The T-matrix elements peak

sharply at q = q

0

in forward and bakward sattering diretions, show strong 2D behavior

around q = q

0

and a very weak momentum dependene for momenta far away from q

0

.

The T-matrix elements for parity-even ase exhibit a similar behavior as the symmetrized

T-matrix elements of the two-boson ase studied in Ref. [13℄.

Figures 4.2-4.5 display T

�St

�

0

�

(q; q

0

; �) for S = 1. Coming as two pairs, eah showing

�rst the real part and then the imaginary part of the T-matrix elements, the �rst pair

(Figs. 4.2 and 4.3) show the parity-even ase and the seond pair (Figs. 4.4 and 4.5)

the parity-odd ase. We see various strong angular and momentum dependene of the

T-matrix elements for momenta around q

0

and a very weak one for momenta away from

q

0

.

Next we take a look at Figs. 4.6 and 4.7, displaying a few examples of T

�St

�

0

�

(q; q

0

; �) as

obtained from the AV18 potential. Thus, we will see how strong the di�erene is between

the half-shell T-matrix elements obtained from the two potentials Bonn-B and AV18. In

Fig. 4.6 the real and imaginary parts of T

�St

�

0

�

(q; q

0

; �) for S = 0 are shown, where the left

side is for parity-even and the right side is for parity-odd ase. Compared with Fig. 4.1

along the on-shell line (q = q

0

) the orresponding T-matrix elements obtained from the

two potentials are idential. However, the detailed strutures are di�erent, espeially the

parity-odd T-matrix elements. One sees that at large momenta q the Bonn-B T-matrix

elements show a stronger angular behavior than the AV18 ones. For the ase S = 1

we present only some T-matrix elements, representing the ones whih look similar to and

those quite di�erent from the orresponding Bonn-B T-matrix elements. The upper part of

Fig. 4.7 shows two AV18 T-matrix elements onsiderably di�erent from the orresponding

Bonn-B ones displayed in the upper part of Fig. 4.5. The lower part of Fig. 4.7 shows

the ones relatively similar, the �gure in the lower left should be ompared to that in the

lower left of Fig. 4.2 and the �gure in the lower right to that in the lower right of Fig. 4.3.

We turn now to the on-shell physial T-matrix elements

a

h�

1

�

2

m

0

1

m

0

2

q

0

^
qjT j�

1

�

2

m

1

m

2

q

0

i

a

, simpli�ed in notation as hm

0

1

m

0

2

jT jm

1

m

2

i, where

m

i

; m

0

i

= � (i = 1; 2) represent the two spin-half states. We are interested in the on-

shell T-matrix elements, sine these are losely related to observables. Equation (3.76)

shows one example of the observables, the spin averaged di�erential ross setion. In the
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Figure 4.1: T

�St

�

0

�

(q; q

0

; �) for S = 0 as funtion of q and os � in units 10

�7

MeV

�2

,

alulated using the Bonn-B potential for q

0

= 375 MeV/, orresponding to E

lab

= 300

MeV. The left side displays the parity-even and the right side the parity-odd ase.
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Figure 4.2: The real part of the parity-even T

�St

�

0

�

(q; q

0

; �) for S = 1 as a funtion of q and

os � in units 10

�7

MeV

�2

, alulated using the Bonn-B potential for q

0

=375 MeV/.
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Figure 4.3: Same as Fig. 4.2, but for the imaginary part.
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Figure 4.4: The real part of the parity-odd T

�St

�

0

�

(q; q

0

; �) for S = 1 as a funtion of q and

os � in units 10

�7

MeV

�2

, alulated using the Bonn-B potential for q

0

=375 MeV/.
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Figure 4.5: Same as Fig. 4.4, but for the imaginary part.
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Figure 4.6: T

�St

�

0

�

(q; q

0

; �) for S = 0 as a funtion of q and os � in units 10

�7

MeV

�2

,

alulated using the AV18 potential for q

0

= 375 MeV/. The left side displays the

parity-even and the right side the parity-odd ase.
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Figure 4.7: Seleted T

�St

�

0

�

(q; q

0

; �) for S = 1 as a funtion of q and os � in units 10

�7

MeV

�2

, alulated from the AV18 potential for q

0

=375 MeV/.
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following we will use the term amplitudes for the on-shell T-matrix elements.

Considering rotational and parity invariane, one ends up with six independent am-

plitudes,

h+ + jT j+ +i = h� � jT j � �i

h+ + jT j � �i = h� � jT j+ +i

h+� jT j+ +i = h� + jT j+ +i = �h+� jT j � �i = �h� + jT j � �i

h+ + jT j+�i = h+ + jT j � +i = �h� � jT j+�i = �h� � jT j �+i

h+� jT j+�i = h� + jT j � +i

h�+ jT j+�i = h+� jT j � +i: (4.18)

Therefore, instead of alulating 16 amplitudes for all possible m

i

; m

0

i

(i = 1; 2) ombi-

nations one needs only to alulate these six amplitudes. In Figs. 4.8-4.10 we display

the squared absolute values of these six amplitudes for the np system as a funtion of

the laboratory energy and the .m. sattering angle os �, alulated from the Bonn-B

potential. We show the amplitudes up to 1 GeV, whih is muh beyond the energy range,

where the Bonn-B as well as the AV18 potentials de�ned, namely below the �-threshold.

At this point we only want to demonstrate that our alulation at higher energies takes

the same e�ort as the one at very low energies. The reason is of ourse that we do not

work with partial waves. We would like to remark that, as indiated in Eq. (3.102), these

on-shell amplitudes an also be alulated from the PW projeted S-matrix and T-matrix

elements. For a numerial test of our formulation we used this relation.

4.2.3 Observables

In this subsetion we ompare NN sattering observables obtained from our 3D alu-

lations with experimental data. However, at �rst we ompare with results from standard

PW alulations.

By de�nition a 3D alulation ontains ontributions from all partial waves. Thus,

omparing with PW alulations, where inreasing maximum total angular momentum

j

max

are taken into aount, is instrutive. Here we an observe how with inreasing j

max

the PW alulations onverge towards the omplete sum of all partial waves. We show

the spin averaged di�erential ross setion (shortly alled the ross setion) and two spin

observables A

y

and D

t

for the np system.

Figures 4.11-4.13 display the above given observables forE

lab

= 100 MeV and Figs.4.14-

4.16 display them for E

lab

= 300 MeV. All �gures show alulations based on the AV18

potential. At E

lab

= 100 MeV j

max

= 10 gives a ompletely onverged result for the ross
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Figure 4.8: The squared absolute value of the on-shell physial T-matrix elements denoted

by jhm

0

1

m

0

2

jT jm

1

m

2

ij

2

(see text) in units 10

�14

MeV

�4

as a funtion of E

lab

and os �.
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Figure 4.9: Same as Fig. 4.8, but for di�erent m

i

; m

0

i

(i = 1; 2) ombinations.
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Figure 4.10: Same as Fig. 4.8, but for di�erent m

i

; m

0

i

(i = 1; 2) ombinations.
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setion and D

t

. For A

y

j

max

= 8 is enough. At E

lab

= 300 MeV more partial waves

are needed. The ross setion and D

t

require j

max

= 16 for a onverged result, while A

y

needs only j

max

= 12. For the ross setion, the high values of j

max

are required to reah

onvergene at forward and bakward diretions. These omparisons give us a view of

how many LSE's are to be solved in the PW alulations. One harateristi of a PW

alulation is also shown in these omparisons, that is its osillatory behavior. This is

observed most obviously in Fig.4.16. A PW alulation of higher order osillates more

rapidly than that of lower order. This behavior reminds us of the Legendre polynomial

ouring in the PW expansion of a plane wave.

Next we ompare with experimental data. We hoose some energies beyond the

�-threshold for the NN system, where the potentials are �tted, and at limit of the �t

range of the two potentials Bonn-B and AV18. For lower energy we have already seen

that our 3D alulations agree with the onverged standard PW ones.

The reason of hoosing higher energies is the following. First, the 3D formulation

is espeially advantageous at higher energies. Seond, later we onsider three-nuleon

proesses suh as the proton-deuteron break-up proess. For this reation data exist at

higher energies up to about 500 MeV. The o�-the-energy-shell (o�-shell) NN T-matrix

elements are the input for alulations of this proess. Thus, a omparison of our results

for the NN observables to data are important.

In Figs. 4.17-4.22 we present various observables from 3D alulations for both po-

tentials Bonn-B and AV18 together with the partial wave analyses (PWA). The PWA

and data are taken from CNS DAC (http://gwda.phys.gwu.edu/). In the �gure aptions

we give the individual soure of the experimental data. We inlude also observables for

the pp system in this evaluation (see Figs. 4.18 and 4.22), sine the proton-deuteron

break-up proess involve both np and pp sub-systems. In general the �gures show a

good agreement between our alulations and data as well as the PWA. Even for the pp

system in Figs. 4.18 and 4.22 the Bonn-B potential predits the data reasonably well. In

most ases preditions from the AV18 potential and the PWA are lose to eah other.

We onlude from this evaluation that even for these higher energies our 3D alulations

using the two NN potentials Bonn-B and AV18 are aeptable.
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Figure 4.11: np spin averaged di�erential ross setion at E

lab

= 100 MeV. The urve

3D is obtained from the 3D alulation. The other urves are obtained from the PW

alulations with indiated maximum NN total angular momentum j

max

.
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Figure 4.12: Same as Fig.4.11, but for analyzing power A

y

.
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Figure 4.13: Same as Fig.4.11, but for polarization transfer oeÆient D

t

.
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Figure 4.14: Same as Fig.4.11, but for E

lab

= 300 MeV.
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Figure 4.15: Same as Fig.4.12, but for E

lab

= 300 MeV.
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Figure 4.16: Same as Fig.4.13, but for E

lab

= 300 MeV.
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Figure 4.17: np spin averaged di�erential ross setion at E

lab

= 340 MeV. \EXP" are

data taken from Franz, PS87, 14 (2000). The urve \PWA" is obtained from partial wave

analyses, the urve \Bonn-B" from alulations based on the Bonn-B potential and the

urve \AV18" from alulations based on the AV18 potential.
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Figure 4.18: Same as Fig. 4.17, but for pp analyzing power A

y

at E

lab

= 350 MeV. Data

soure is Prezwoski, Phys. Rev. C58, 1897 (1998).
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Figure 4.19: Same as Fig. 4.17, but for np depolarization D at E

lab

= 380 MeV. Data

soure for both \EXP1" and \EXP2" is Arnold, EPJC17, 83 (2000).
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Figure 4.20: Same as Fig. 4.17, but for np polarization transfer oeÆient D

t

at E

lab

= 386

MeV. Data soure for both \EXP1" and \EXP2" is Ahmidouh, EPJC2, 627 (1998).
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Figure 4.21: Same as Fig. 4.17, but for np spin orrelation parameter A

zz

at E

lab

= 380

MeV. Data soure for both \EXP1" and \EXP2" is Arnold, EPJC17, 67 (2000)
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Figure 4.22: Same as Fig. 4.17, but for pp spin orrelation parameter A

zx

at E

lab

= 350

MeV. Data soure is Prezwoski, Phys. Rev. C58, 1897 (1998).



Chapter 5

THREE-DIMENSIONAL

FORMULATION FOR THE

DEUTERON

The three-dimensional approah for NN sattering developed in Chapter 3 was started

with the reation of the momentum-heliity basis. One this basis is de�ned the sattering

equation is projeted on this basis and the sattering as well as the NN potential matrix

elements are alulated in that basis. Thus, it is general and appliable not solely to NN

sattering but also to the NN bound system, the deuteron. In this ase, the nonrelativisti

deuteron equation and the states are projeted on the momentum-heliity basis.

The motivation to use diretly the relative momentum vetor in alulating NN satter-

ing is to avoid the ompliations whih our in the standard partial wave deomposition,

when very many partial waves take part in the proess. Sine the deuteron state onsists

of only two partial wave projeted omponents, namely s and d waves, there is no suh

a ompliation. However, developing the three-dimensional method leads to the use of

a three-dimensional representation of the NN potential, in other words we abolish the

partial wave representation of the NN potential. If one wants to use the potential de�ned

in three-dimensional fashion, then it is neessary to apply the three-dimensional method

to the deuteron as well. It is also of interest to investigate the deuteron properties in a

three-dimensional fashion in momentum spae. In on�guration spae a orresponding

three-dimensional investigation on the deuteron wave funtion and densities based on the

NN potential AV18 [20℄ has been arried out in Ref. [45℄.

In addition we derive the deuteron wave funtion in operator form in momentum

spae. The simple struture of the wave funtion in spin operators is suitable for the

momentum-heliity basis and hene poses no diÆulties in projeting the wave funtion

71
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on this basis. The projetion gives analyti expressions of the angular behavior of the

deuteron wave funtion, whih are di�erent from the familiar ones. The deuteron wave

funtion in operator form enables to investigate probability densities of various internal

spin on�gurations of the deuteron. The resulting expressions have an analyti angular

behavior. In on�guration spae a orresponding expression of the deuteron wave funtion

an be found in Refs. [46, 47℄.

We present two formulations for the deuteron in the momentum-heliity basis. The

di�erenes of these two formulations emerge from the wave funtion and show by no means

ontraditions between the two formulations. In the �rst formulation we diretly projet

the deuteron state on the momentum-heliity basis, thus introduing the wave funtion

omponents of the deuteron in this basis. In the seond formulation we �rst derive an

operator form of the deuteron wave funtion and then projet it on the momentum-heliity

basis. The wave funtion omponents obtained in this manner exhibit an analyti angular

behavior.

We desribe the �rst formulation in Setion 5.1, where we begin with the expansion

of the deuteron state in the momentum-heliity basis and at the same time introdue the

deuteron wave funtion omponents in this basis. We evaluate the normalization of these

wave funtion omponents as well as the deuteron density. Next we projet the deuteron

eigenvalue equation on the momentum-heliity basis and end up with a set of two oupled

integral equations in two variables, i.e. the magnitude of the relative momentum and the

angle between the relative momentum and some arbitrary z-axis. We evaluate the partial

wave omponents, the s and d waves of the deuteron wave funtion, in terms of the wave

funtion omponents in the momentum-heliity basis to test the formulation.

The seond formulation is desribed in Setion 5.2. We begin with the derivation of

the deuteron wave funtion in operator form, in whih we make use of the deuteron partial

wave omponents s and d waves. Next we projet the wave funtion on the momentum-

heliity basis. As result we an extrat the angular parts of the wave funtion omponents,

whih are analyti. We proeed with further simplifying the deuteron eigenvalue equation

obtained in the �rst formulation, and �nally get a set of two oupled integral equations

in one variable, i.e. the magnitude of the relative momentum, from whih one an get

the radial parts (in momentum spae) of the deuteron wave funtion omponents. We

onnet these radial parts of the deuteron wave funtion omponents to the deuteron s

and d waves.

Using the deuteron wave funtion in operator form we an investigate probability

densities of various internal spin on�gurations of the deuteron. For an overall polarized

deuteron there are various possible spin orientations of the two nuleons in the deuteron.
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For instane, both nuleons have their spins up, or one nuleon has its spin up and the

other down. We derive in Setion 5.3 analyti expressions of the orresponding probability

densities and display the results.

5.1 Formulation I

5.1.1 Deuteron Wave Funtion in the Momentum-Heliity Basis

Consider j	

M

d

d

i as the deuteron state, with M

d

being the projetion of the total angular

momentum along an arbitrary z-axis. The state will be expanded in the momentum-

heliity basis jq;
^
qS�; ti

�a

de�ned in Eq. (3.16). Inserting the ompleteness relation for

the momentum-heliity basis given in Eq. (3.26) gives

�

�

�	

M

d

d

E

=

1

4

1

X

�=�1

Z

dq jq;
^
q1�; 0i
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q1�; 0j 	
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dq
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hq;
^
q11; 0j 	
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^
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hq;
^
q10; 0j 	

M

d

d

E

+ jq;
^
q1� 1; 0i

1a

1a

hq;
^
q1� 1; 0j 	

M

d

d

Eo

; (5.1)

in whih we have inserted the deuteron properties, i.e. S = 1, t = 0 and the parity is

even. Aording to Eq. (3.44) the momentum-heliity basis an be written as

jq;
^
qS�; ti

�a

= (jqi+ �

�

j�qi) j
^
qS�i jti ; (5.2)

and this together with Eq. (3.20) gives the following symmetry relation for the momentum-

heliity basis

jq;
^
qS�; ti

�a

= �

�

(�)

S

(j�qi+ �

�

jqi) j�
^
qS � �i jti

= �

�

(�)

S

j�q;�
^
qS � �; ti

�a

: (5.3)

Thus, we an simplify Eq. (5.1) to
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In the last step of Eq. (5.4) we have de�ned the deuteron wave funtion omponent

in the momentum-heliity basis as

'

M

d

�

(q) �

1a

hq;
^
q1�; 0j 	

M

d

d

E

: (5.5)

Sine the state jq;
^
qS�i is obtained by rotating the state jq

^
z;

^
zS�i by means of a rotation

operator

R(
^
q) = exp�iJ

z

� exp�iJ

y

�; (5.6)

as

jq;
^
qS�i = R(

^
q) jq

^
z;

^
zS�i ; (5.7)

where J = L+ S is the operator of total angular momentum, it follows that
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In this way, we an pull out the azimuthal dependeny of '

M

d

�

(q) as

'

M

d

�

(q) � '

M

d

�

(q; �)e

iM

d

�

; (5.9)

and �nally get the expansion of the deuteron state in the momentum-heliity basis as

�
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: (5.10)

The normalization of the wave funtion omponents '

M

d

�

(q; �) an be determined from

the normalization of the deuteron state aording to the following equation
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: (5.11)

In obtaining this equation we have used the orthonormality of the momentum-heliity

basis given in Eq. (3.23). To proeed we need to know the symmetry property of '

M

d

�

(q; �).
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Using the symmetry relation given in Eq. (5.3) we an �nd the relation between '

M

d

�

(q)

and '

M

d

��

(�q) as

'
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d
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and therefore,

'
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M

d

'

M

d

��

(q; � � �): (5.13)

Thus, the normalization of '

M

d

�

(q; �) is determined by the following equation:
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Now we de�ne the deuteron density �

M

d

(q) as

�

M

d

(q) �
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(5.15)

suh, that the probability to �nd a deuteron in any possible heliity state and having

the relative momentum of the two nuleons between q and q + �q is �

M

d

(q)�q. This

de�nition follows naturally from the following algebra:
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Inserting Eq. (5.10) into Eq. (5.15) this yields
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Thus, it follows that
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5.1.2 Two-Dimensional Deuteron Eigenvalue Equation

The deuteron state j	

M

d

d

i satis�es the eigenvalue equation
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= 0; (5.19)

where E

d

is the deuteron binding energy. Projeting this eigenvalue equation on the state
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and using the expansion of j	
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i given Eq. (5.10) leads to
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Hene, the projeted eigenvalue equation for the deuteron on the momentum-heliity basis

onsists of a set of two oupled integral equations
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where � = 1; 0. The wave funtion omponents '

M

d

�

(q; �) have no azimuthal dependene,

and therefore the �

0

-integral in this equation an be arried out independently. Realling

the de�nition given in Eq. (3.70), the �nal expression for the deuteron eigenvalue equation

is given as
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This resulting set of equations for the deuteron, whih onsists of two oupled two-

dimensional integral equations, is onsistent with the set of equations for a NN system

in sattering states evaluated in Chapter 3 (see Eq. (3.73)). Arriving at this point we

would like to give some remarks. The deuteron eigenvalue equation given in Eq. (5.22)

and thus the resulting deuteron wave funtion omponents from this equation, whih are

de�ned in Eq. (5.9), are obtained with the assuming of the deuteron properties, i.e. S = 1,

t = 0 and onsequently the parity being even. As a matter of fat this assumption is not

neessary. Even if we obtain a set of equations for a NN bound system with any spin,

isospin and parity, a alulation using a realisti NN potential will show that the solution

of the equations exists only for that ertain quantum numbers. In other words, nature

will reveal itself without additional assumptions. Therefore, for this approah there is no

a priori knowledge needed, the approah will automatially provide full insight into the

deuteron.

5.1.3 Deuteron Partial Wave Projeted Wave Funtion

Now we would like to onnet the deuteron wave funtion omponents '

M

d

�

(q; �) with the

standard partial wave omponents  

l

(q) of the deuteron wave funtion, whih are de�ned

as
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(q) � hq(l1)jm; 0j 	
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d

E

; (5.23)

where jq(lS)jm; ti is the partial wave basis given in Eq. (3.84). Again, for simpliity, we

use the already known spin and isospin of the deuteron, but left l, j and m arbitrary,

whih are the orbital, total and magneti total angular momentum quantum numbers,

respetively.

We begin by inserting into the projetion in Eq. (5.23) the expansion of

�

�

�	

M

d

d

E

given

in Eq. (5.10):
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Realling the overlap given in Eq. (3.88) and using Eq. (5.2), the salar produt of the

partial wave and momentum-heliity basis is given as
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in whih we have used the omplex onjugate of the relation given in Eq. (3.91) as

well as the omplex onjugate of an addition theorem for Wigner's D-funtions given

in Eq. (3.100). Inserting this salar produt into Eq. (5.24) gives
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(5.26)

Equation (5.26) reveals that the partial wave projetion of the deuteron state exists only

for m = M

d

and even l, whih demonstrates the even parity of the deuteron. Thus, we

obtain
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: (5.27)

Equation (5.27) does not exhibit exatly the well known deuteron quantum numbers l,

j and m. These quantum numbers must be determined by expliit alulations, in whih
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one inserts into Eq. (5.27) the deuteron wave funtion omponent '

M

d

�

(q; �) obtained as

the solution of Eq. (5.22).

5.1.4 Expliit Solution of the Two-Dimensional Deuteron Eigen-

value Equation

In this setion we show results from numerial evaluations of Eq. (5.22). To solve this

eigenvalue equation we use the power method [48, 49℄ and get the deuteron binding

energy E

d

as well as the deuteron wave funtion omponents '

M

d

�

(q; �). A modi�ation

to the power method is neessary as desribed in Ref. [50℄ to exlude unphysial solutions

orresponding to bound states in the repulsive ore region of the NN fore. The alu-

lations are arried out based on the NN potentials Bonn-B [21℄ and AV18 [20℄.

The integrals in Eq. (5.22) are evaluated by means of the Gauss-Legendre quadrature.

For both potentials 10 integration points for the �

0

-integration and 32 integration points

for the os �

0

-integration are suÆient. The hyperboli mapping with ut-o� (see Appendix

E) is employed for the q

0

-integration. Using the Bonn-B potential we obtain the deuteron

binding energy 2.224 MeV, with the q

0

-integration interval being ut o� at 30 fm

�1

. Using

the AV18 potential the resulting deuteron binding energy is 2.225 MeV and the ut o� is

at 8 fm

�1

.

In Fig. 5.1 we display the deuteron wave funtion omponents '

M

d

�

(q; �) for M

d

= 0

as funtions of q and os �. The �gures on the left result from alulations based on the

Bonn-B potential and those on the right on the AV18 potential. The results obtained

from the two potentials look quite similar. Both drop steeply as the magnitude of the

relative momentum between the two nuleons inside the deuteron inreases from zero to

about 100 MeV/. The wave funtion omponent '

0

0

(q; �) shows a osine-like behavior

indiated at q = 0 by the straight line onneting its maximum at � = 0 with its minimum

at � = 180

o

through zero at � = 90

o

. In ontrast, the wave funtion omponent '

0

1

(q; �)

displays sine-like behavior; it peaks at � = 90

o

and vanishes at � = 0 and 180

o

. The

�gures reveal that the maximum of '

0

0

(q; �) is larger than that of '

0

1

(q; �).

Fig. 5.2 displays the deuteron wave funtion omponents '

M

d

�

(q; �) for M

d

= 1 and

�1 as funtions of q and os �, resulting from alulation based on the Bonn-B potential.

Calulations based on the AV18 potential give very muh similar results and are therefore

not shown here. Similar to those with M

d

= 0, these wave funtion omponents also

deay quikly as the relative momentum between the two nuleons inside the deuteron

inreases from zero to 100 MeV/. The two �gures (a) and () depit '

1

0

(q; �) and

'

�1

0

(q; �), respetively. Both vanish at � = 0 and 180

o

but di�er in sign for the other
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�-values. For instane, while at � = 90

o

'

1

0

(q; �) reahes its minimum, '

�1

0

(q; �) reahes

its maximum. The �gures (b) and (d) display '

1

1

(q; �) and '

�1

1

(q; �), respetively, whih

show also opposite behavior. '

1

1

(q; �) peaks at � = 0 and vanishes at � = 180

o

, whereas

'

�1

1

(q; �) peaks at � = 180

o

and vanishes at � = 0. This angular behavior of the two wave

funtion omponents suggests a relation between the two funtions, whih will beome

lear later in Setion 5.2.2. It is shown that for M

d

= 1 and �1 the maximum of '

M

d

1

(q; �)

is larger than that of '

M

d

0

(q; �).

Having obtained the deuteron wave funtion omponents, it is straightforward to al-

ulate the deuteron densities �

M

d

(q) given in Eq. (5.18). These densities based on the NN

potential Bonn-B are displayed in Fig. 5.3. The �gures (a) and (b) are for M

d

= 0, while

those �gures () and (d) are for M

d

= 1. For M

d

= �1 the density is the same as that

for M

d

= 1. Calulations based AV18 potential give similar results and are therefore not

shown. The �gures (a) and () displays the two deuteron densities as funtions of q and

os �, and the �gures (b) and (d) depits them as funtions of the Cartesian omponents

of q, i.e. q

x

and q

z

. A ut through the q

x

-q

z

-plane is shown, where eah urve represents

an equidensity urve. Sine the wave funtions are invariant under rotations around the

q

z

-axis, this urve rotated around the q

z

-axis will form a three-dimensional equidensity

surfae of the deuteron. For small q the two densities show uniform distributions along

�, and therefore the equidensity surfaes are spherial. The largest densities at q = 0

for all M

d

's means that the most probable on�guration for the deuteron is that the two

nuleons being at rest with respet to eah other.

The onnetion to the standard partial wave expansion by means of Eq. (5.27) returns

the well known s and d wave omponents of the deuteron wave funtion. Thus, the

deuteron properties are well revealed by this numerial onnetion.

5.2 Formulation II

5.2.1 Deuteron Wave Funtion in Operator Form

The deuteron has a neutron and a proton as its onstituents. These two nuleons may

have their spins pointing in some possible diretions even if the deuteron is overall

polarized. Therefore, it is interesting to investigate the various possible deuteron in-

ternal spin on�gurations. In order to realize this it would be appropriate if the deuteron

wave funtion is strutured suh that the deuteron spin state is separated from the other

parts. In this way, operators for some spin on�gurations an be applied to the wave

funtion and their probability densities an be alulated easily. We derive in this setion
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(a) (c)

(b) (d)

Figure 5.1: The deuteron wave funtion omponents for M

d

= 0 in units 10

�3

MeV

�1:5

as

funtions of q and os �. The �gures (a) and (b) are obtained based on the NN potential

Bonn-B and the �gures () and (d) are obtained based on AV18. Figures (a) and ()

depit '

0

0

(q; �) whereas �gures (b) and (d) display '

0

1

(q; �).
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(a) (c)

(b) (d)

Figure 5.2: The deuteron wave funtion omponents based on Bonn-B as funtions of

q and os � in units 10

�3

MeV

�1:5

: (a) '

1

0

(q; �), (b) '

1

1

(q; �), () '

�1

0

(q; �) () and (d)

'

�1

1

(q; �).
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(a) (b)

(c) (d)

Figure 5.3: The deuteron density based on Bonn-B for M

d

= 0 ((a) and (b)) and M

d

= 1

(() and (d)) in units 10

�6

MeV

�3

, shown as funtions of q and os � on the left side, and

of q

x

and q

z

on the right side. The ontours in �gures (b) and (d) represent equidensity

urves on the q

x

-q

z

-plane.
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the deuteron wave funtion in momentum spae with that struture, evaluate its proper-

ties espeially its angular behavior and use it to get another set of deuteron eigenvalue

equation. The appliation of this wave funtion to the evaluations of probability densities

for the deuteron internal spin on�gurations is presented in Setion 5.3.

We begin with the partial wave expansion of the deuteron state

�

�

�	

M

d

d

E

:

�

�

�	

M

d

d

E

=

X

l=0;2

Z

1

0

dq q

2

jq(l1)1M

d

; 0i 

l

(q); (5.28)

where  

l

(q) is de�ned in Eq. (5.23). The momentum spae representation of this expansion

results as

	

M

d

d

(q) � hq

�

�

�	

M

d

d

E

= hqj

X

l=0;2

Z

1

0

dq

0

q

0

2

jq

0

(l1)1M

d

; 0i 

l

(q

0

)

= hqj

X

l=0;2

Z

1

0

dq

0

q

0

2

X

m

s

C(l11;M

d

�m

s

; m

s

M

d

) jq

0

lM

d

�m

s

i j1m

s

i j0i 

l

(q

0

)

=

X

l=0;2

Z

1

0

dq

0

q

0

2

Æ(q � q

0

)

q

0

q

�

X

m

s

C(l11;M

d

�m

s

; m

s

M

d

)Y

lM

d

�m

s

(
^
q) j1m

s

i j0i 

l

(q

0

)

= j1M

d

i

1

p

4�

 

0

(q) j0i

+ fj11iC(211;M

d

� 1; 1M

d

)Y

2;M

d

�1

(
^
q)

+ j10iC(211;M

d

0M

d

)Y

2M

d

(
^
q)

+ j1� 1iC(211;M

d

+ 1;�1;M

d

)Y

2;M

d

+1

(
^
q)g 

2

(q) j0i ; (5.29)

where we have used the omplex onjugate of the projetion given in Eq. (3.87). Here j0i

denotes the isospin state jti with t = 0.

We would like to simplify this expression so that it has the form

	

M

d

d

(q) = f

0

 

0

(q) + 

2

 

2

(q)g j1M

d

i j0i ; (5.30)

where the deuteron spin state is separated j1M

d

i, and 

0

and 

2

are operators ating on it.

In fat, the operator 

0

is a onstant, i.e. 

0

=

1

p

4�

(see Eq. (5.29)). The operator 

2

must

be salar under rotation, sine the spin state j1M

d

i has already the orret transformation

property under this rotation. At the same time, aording to Eq. (5.29) this operator 

2

must onnet the states j1� 1i, j10i and j11i to the state j1M

d

i. Thus, the operator 

2

has to be formed as ombination of the spherial omponents of the spin operators �

1

and �

2

.
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To proeed, we hoose as example M

d

= 1. Inserting M

d

= 1 into Eq. (5.29) gives

	

1

d

(q) = j11i

1

p

4�

 

0

(q) j0i

+

8

<

:

j11i

s

1

10

Y

20

(
^
q)� j10i

s

3

10

Y

21

(
^
q) + j1� 1i

s

3

5

Y

22

(
^
q)

9

=

;

 

2

(q) j0i : (5.31)

The expliit expressions of the spherial harmoni funtions are (see [32℄ for similar

expression in oordinate representation)

Y

20

(
^
q) =

1

4

s

5

�

(2 os

2

� � sin

2

�)

=

1

4q

2

s

5

�

(2q

2

z

� q

2

x

� q

2

y

)

=

1

2q

2

s

5

�

(q

2

0

+ q

1

q

�1

) (5.32)

Y

2�1

(
^
q) = �

1

2

s

15

2�

os � sin �e

�i�

= �

1

2q

2

s

15

2�

q

z

(q

x

� q

y

)

=

1

2q

2

s

15

�

q

0

q

�1

(5.33)

Y

2�2

(
^
q) =

1

4

s

15

2�

sin

2

�e

�2i�

=

1

4q

2

s

15

2�

(q

x

� iq

y

)

2

=

1

2q

2

s

15

2�

q

2

�1

; (5.34)

where q

1

; q

0

and q

�1

are the spherial omponents of the momentum [31℄:

q

�1

= �

1

p

2

(q

x

� iq

z

) q

0

= q

z

q

2

0

� 2q

1

q

�1

= q

2

(5.35)

Thus, we obtain

	

1

d

(q) = j11i

1

p

4�

 

0

(q) j0i

+

n

j11i (q

2

0

+ q

1

q

�1

)� j10i 3q

0

q

1

+ j1� 1i 3q

2

1

o

1

2q

2

s

1

2�

 

2

(q) j0i : (5.36)

To determine 

2

we onsider �rst the ombination

�

1

� q�

2

� q =

�

�

(1)

0

q

0

� �

(1)

1

q

�1

� �

(1)

�1

q

1

� �

�

(2)

0

q

0

� �

(2)

1

q

�1

� �

(2)

�1

q

1

�

; (5.37)
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and obtain for the sample ase M

d

= 1

�

1

� q�

2

� q j11i = �

1

� q

�

�

�

�

1

2

1

2

�

1

�

2

� q

�

�

�

�

1

2

1

2

�
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�

�
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�
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�
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�

�
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�

1
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1
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�
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2

0

j11i � 2q

0

q

1

j10i+ 2q

2

1

j1� 1i ; (5.38)

where

�

�

�

1

2

�

1

2

E

i

(i = 1; 2) are the spin states of the individual nuleons. This equation

(5.38) ontains atually the l = 0 admixture of the deuteron wave funtion as an be seen

by projeting on Y

00

(
^
q). It an be removed by subtrating

1

3

q

2

j11i from it. This yields

�

�

1

� q�

2

� q�

1

3

q

2

�

j11i =

2

3

�

q

2

0

+ q

1

q

�1

�

j11i � 2q

0

q

1

j10i+ 2q

2

1

j1� 1i : (5.39)

Compared to the orresponding terms in Eq. (5.36) it follows that this tensor operator

�

1

� q�

2

� q �

1

3

q

2

is already the orret form for 

2

up to some fator. Hene, 	

1

d

(q)

results as
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1
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2
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1

3
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�
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2

(q)

�

j11i j0i ; (5.40)

where

�

 

0

(q) �

1

p

4�

 

0

(q) (5.41)

�

 

2

(q) �

3

4q

2

1

p

2�

 

2

(q) (5.42)

The expression in Eq. (5.40) was derived for M

d

= 1. Similar derivations for M

d

= 0

and M

d

= �1 show that this form with the orresponding spin state applies also to

M

d

= 0;�1:
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�1

d

(q) = j1� 1i

1

p

4�

 

0

(q) j0i

+

n

j11i 3q

2

�1

� j10i 3q

0

q

�1

+ j1� 1i (q

2

0

+ q

1

q

�1

)

o

1

2q

2

s

1

2�

 

2

(q) j0i

=

�

�

 

0

(q) +

�

�

1

� q�

2

� q�

1

3

q

2

�

�

 

2

(q)

�

j1� 1i j0i : (5.44)

Thus, we obtain the deuteron wave funtion in operator form in momentum spae as
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In the above expression the positive parity of the deuteron beomes obvious, sine

	

M

d

d

(q) = 	

M

d

d

(�q). A orresponding expression in oordinate spae an be found in

Ref. [47℄, whih in fat goes bak to the work of Rarita and Shwinger in 1941 [46℄.

We evaluate now the normalization of this deuteron wave funtion in operator form

given in Eq. (5.45). Using
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we obtain

D
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Thus, we get the standard normalization of the partial wave omponents of the deuteron

wave funtion.

5.2.2 Analyti Angular Behavior of the Deuteron Wave

Funtion

In this setion we would like to reevaluate the deuteron wave funtion omponents '

M

d

�

(q)

de�ned in Eq. (5.5) by making use of the momentum representation 	

M

d

d

(q) of the

deuteron state given in Eq. (5.45). The operator �

1

� q�

2

� q in Eq. (5.45) an be ex-

pressed in terms of the total heliity operator S � q, whih is more appropriate for the

momentum-heliity basis jq;
^
qS�; ti

�a

, as

�

1

� q�

2

� q = 2(S � q)

2

� q

2

: (5.49)

Thus, the deuteron wave funtion omponents in the momentum-heliity basis are given

as

'
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with the analyti angular behavior e

iM

d

�

d

1

M

d

�

(�), where the d-matrix is expliitly given

as [31℄
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C

C

A

: (5.51)

We de�ne for the radial parts of the wave funtion omponents an angle independent

funtion �

�

(q) as

�
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(q): (5.52)

(From now on we all this funtion the amplitude �

�

(q).) Hene, the deuteron wave

funtion omponents in the momentum-heliity basis an be expressed as

'

M

d
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(q) = 2�
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(q)e
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d
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(�)
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(q; �)e
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�

: (5.53)

The fator of 2 is kept in the expression for later onveniene, and '

M

d

�

(q; �) are the two-

dimensional wave funtion omponents de�ned in Eq. (5.9). The normalization of this

amplitude �

�

(q) an be obtained by inserting Eq. (5.53) into Eq. (5.14):
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; (5.54)

whih agrees with Eq. (5.48). In the last step of Eq. (5.54) we have used the orthogonality

property of the d-matries:
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1
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: (5.55)

Let us now return to Setion 5.1.4 to evaluate some behavior of the results displayed

in that setion.

The wave funtion omponents '

M

d

�

(q; �) obtained from numerially solving of Eq. (5.22)

display an angular behavior, whih should be ompared to the analyti one. With the

help of Eqs. (5.53) and (5.51) we an express '

M

d

�

(q; �) showing their analyti angular

behavior as

M

d

= 0 : '

0

0

(q; �) = 2�

0

(q) os � (5.56)
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'
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1

(q)(1� os �): (5.61)

Clearly, the numerial angular behavior displayed in Figs. 5.1 and 5.2 agrees with the

analyti one.

At small q, where the maxima of j'

M

d

�

(q; �)j our, the amplitude �

�

(q) are

determined dominantly by the s-wave. Therefore, the d-matrix determines how the

maxima hange with � and M

d

. This explains why the maximum of j'

M

d

M

d

(q; �)j is larger

than that of j'

M

d

� 6=M

d

(q; �)j. The expressions in Eqs. (5.56)-(5.61) show that the ratio
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j is exatly
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Using Eqs. (5.56)-(5.61) the analyti angular behavior of the deuteron densities given

in Eq. (5.18) an now be derived. We �nd for M
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For small q , where �

0

(q) and �

1

(q) are almost idential, �

0

(q) and �

�1

(q) are very muh

the same to eah other and are perfet spheres. For larger q these spheres are deformed

aording to the ratio j�

0

(q)=�

1

(q)j.

5.2.3 One-Dimensional Deuteron Eigenvalue Equation

Realling the derivation of the deuteron eigenvalue equation given in Eq. (5.22), we notie

that there we have been able to separate out the azimuthal integration. Sine we now know
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the angular behavior of the deuteron wave funtion omponents, we see that analytially

the equation is separable into the angular and the radial parts. Finally we need to solve

only the radial part of that deuteron eigenvalue equation.

Inserting Eq. (5.53) into Eq. (5.21) gives
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(5.65)

This is an equation, whih is valid for any diretion of q. For
^
q =

^
z the azimuthal

dependenies of the potential an be fatored out similarly as in Eq. (3.53) to give
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and therefore, the equation is simpli�ed by hoosing this diretion:

 

q

2

m

� E

d

!

�

�

(q)Æ

M

d

�

+

Z

dq

0

e

i(M

d

��)�

0

�

1

2

V

110

�1

(q; q

0

; �

0

)�

1

(q

0

)d

1

M

d

1

(�

0

) +

1

4

V

110

�0

(q; q

0

; �

0

)�

0

(q

0

)d

1

M

d

0

(�

0

)

�

= 0:

(5.67)

Equation (5.67) survives for M

d

= �, and this leads to
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This ondition M

d

= � for the equation to survive does not exlude the existene of its

solution for M

d

6= �. In fat, the solution for M

d

6= � at this spei� diretion
^
q =

^
z

vanishes, as displayed in Setion 5.1.4. By hoosing M

d

= 1 and 0 we have a losed system

of two oupled equations for the amplitudes �
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equation (5.68) is redued to a set of two oupled equations in one variable, namely q:
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As in the evaluations of Eq. (5.22) in Setion 5.1.4 we employ the power method to

solve this set of Eq. (5.70). We also take the same Gaussian-Legendre quadrature points

for the q

0

- and os �

0

-integrations. For the NN potential Bonn-B we obtain the deuteron

binding energy 2.224 MeV and for the AV18 potential 2.225 MeV. The amplitudes �

0

(q)

and �

1

(q) are displayed in Fig. 5.4 for the Bonn-B and in Fig. 5.5 for the AV18. The

�gures show that for small q the amplitudes �

0

(q) and �

1

(q) are of the same magnitude,

and both fall from their largest values by about one order of magnitude at q � 200 MeV/.

The amplitude �

1

(q) has its �rst node at q � 300 MeV/, whereas �

0

(q) has its own �rst

node at q � 900 MeV/ for the Bonn-B and at q � 1000 MeV/ for the AV18. Within the

momentum range shown the magnitude of �

0

(q) and �

1

(q) for the Bonn-B in general fall

o� with the same rates, whereas for the AV18 the magnitude of �

1

(q) dereases slower

than that of �

0

(q).

5.2.4 Connetion to the Standard Partial Wave Representation

In Setion 5.1.3 we have started to onnet the deuteron wave funtion omponents in

the momentum-heliity basis to the partial wave projeted omponents of the deuteron

state. We have obtained Eq. (5.27), whih left the determination of some deuteron

quantum numbers for numerial alulation. With the analyti angular behavior of

'

�

(q; �) given, we an ontinue deriving the onnetion and �nd the remaining

quantum numbers. Inserting Eq. (5.53) into Eq. (5.27) yields
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; (5.71)

in whih we have used the orthogonality property of the d-matries given in Eq. (5.55).

It turns out that the onnetion exists only for a total angular momentum j = 1, and the

Clebsh-Gordon oeÆients allow only l = 0 and l = 2. Thus, we obtain for the s and d

waves
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(q)g (5.72)
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(q)g ; (5.73)

whih is onsistent with Eq. (5.52).
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Figure 5.4: The absolute values of the amplitudes �
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(q) and �

1

(q) in units MeV

�1:5

for

Bonn-B.
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Figure 5.5: Same as Fig. 5.4, but for AV18.
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5.3 Probability Densities for Di�erent Spin Con�-

gurations

In this setion we desribe the internal spin on�guration of the deuteron with the help of

the deuteron wave funtion in operator form given in Eq. (5.45). As example we hoose

an overall polarized deuteron with M

d

= 1. Cases of interest are if (1) both nuleons

have their spins up, (2) both nuleons have their spins down, (3) one nuleon has spin

up and the other has spin down, (4) one nuleon has spin up and the other has arbitrary

spin orientation and (5) one nuleon has spin down and the other has arbitrary spin

orientation. The probability densities for these �ve ases are given below in terms of the

deuteron s and d waves.

1. probability density for both nuleons having their spins up:
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: (5.74)

2. probability density for both nuleons having their spins down:
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3. probability density for one nuleon having spin up and the other having spin down:
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4. probability density for one nuleon having spin up and the other having arbitrary

spin orientation:
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5. probability density for one nuleon having spin down and the other having arbitrary

spin orientation:
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The angular dependenies of all these funtions result from terms ontaining the

deuteron d-wave, whih is obvious sine the s-wave is spherially symmetri. Thus, these

probability densities for �ve di�erent internal spin on�gurations of the deuteron exhibit
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ombinations of angular behavior owned by the spherial harmonis funtions of orbital

angular momentum l = 0 and l = 2. These probability densities are shown in Figs. 5.6-

5.11. In Figs. 5.6, 5.8 and 5.10 the left side displays the probability densities as funtions

of q and os �, whereas the right side displays them as funtions of q

x

and q

z

. The ontours

in the the �gures on the right side represent equidensity urves in the q

x

-q

z

-plane, whih

rotated around the q

z

-axis form three-dimensional images of the equidensity surfaes. All

the �gures shown results from the alulations based on the Bonn-B potential. Sine the

AV18 potential produes results of similar shapes they are not displayed.

Fig. 5.6 shows the probability densities for the �rst two ases. The �gures (a) and

(b) display �

1

""

(q), while those �gures () and (d) display �

1

##

(q). The probability density

�

1

""

(q) has its maximum at q = 0, telling that the on�guration where both nuleon have

their spin up ours most probably when the nuleons are at rest with respet to eah

other. In the momentum range shown �

1

""

(q) has a spherial shape, sine aording to

Eq. (5.74) it is dominated by the s-wave. The probability density �

1

##

(q) has a di�erent

shape. It vanishes at q=0 and reahes two maxima at jq

max

j � 100 MeV/ along the

q

x

-axis (� =

�

2

). This tells that for the ase where the two nuleons have their spin down

they have most probable momenta bak to bak and right to the polarization axis of the

deuteron. If the equidensity urves in Fig. 5.6(d) are rotated around the q

z

-axis they will

exhibit a toroidal shape of the equidensity surfaes of this probability density, as shown

illustratively in Fig. 5.7, where two equidensity surfaes are displayed.

In Fig. 5.8 we show the probability density given in Eq. (5.76) for the ase where

the two nuleons have opposite spin diretions to eah other. This probability density is

given solely by the d-wave and a funtion of the angle �. Thus, �

1

##

(q) has four peaks

of equal hight in eah quadrant of the q

x

� q

z

-plane at jq

x

j = jq

z

j = q

max

os(

�

4

). Hene,

for this spin on�guration it is most probable that the two nuleons have momenta bak

to bak and pointing at � = 45

o

. The rotated ontours in the q

x

-q

z

-plane around the

q

z

-axis lead to double toroidal strutures. This is shown illustratively in Fig. 5.9, where

two equidensity surfaes are piked and displayed. The inner tubes represent surfaes of

higher density ompared to the outer ones.

Fig. 5.10 shows the probability densities for the last two on�gurations given in

Eqs. (5.77) and (5.78). The �gures (a) and (b) display �

1

"(1)

(q), whereas the �gures () and

(d) depit �

1

#(1)

(q). For the momentum range shown �

1

"(1)

(q) behaves very

similarly as �

1

""

(q) displayed in the �gures (a) and (b) of Fig. 5.6. This an be understood

as that �

1

""

(q) is larger than �

1

"#

(q) and thus dominates. The probability density �

1

#(1)

(q)

has the same maxima as that of �

1

##

(q) shown in the �gures () and (d) of Fig. 5.6(d),

but a slightly di�erent angular behavior. For a �xed q the hanges of �

1

#(1)

(q) with � are
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slower than that of �

1

##

(q). The 3D-image of �

1

#(1)

(q) is presented in Fig. 5.11, whih looks

similar to the one shown in Fig. 5.7.



5.3 Probability Densities for Di�erent Spin Con�gurations 99

(a) (b)

(c) (d)

Figure 5.6: The probability densities �

1

""

(q) in units 10

�6

MeV

�3

((a) and (b)) and �

1

##

(q)

in units 10

�10

MeV

�3

(() and (d)). The ontours represent equidensity urves in the

q

x

-q

z

-plane.



100 5 Three-Dimensional Formulation for the Deuteron

Figure 5.7: Two seleted equidensity surfaes of �

1

##

(q). The image is reated by rotating

two of the equidensity urves of Fig. 5.6(d) around the q

z

-axis. Note that the q

z

-axis is

strethed out with respet to the other two axes.



5.3 Probability Densities for Di�erent Spin Con�gurations 101

(a) (b)

Figure 5.8: The probability density �

1

"#

(q) in units 10

�10

MeV

�3

. The ontours represent

equidensity urves in the q

x

-q

z

-plane.
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Figure 5.9: Two seleted equidensity surfaes of �

1

"#

(q). The image is reated by rotating

two of the equidensity urves of Fig. 5.8(b) around the q

z

-axis. Note that the q

z

-axis is

strethed out with respet to the other two axes.
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(a) (b)

(c) (d)

Figure 5.10: The probability densities �

1

"(1)

(q) in units 10

�6

MeV

�3

((a) and (b)) and

�

1

#(1)

(q) in units 10

�10

MeV

�3

(() and (d)). The ontours represent equidensity urves in

the q

x

-q

z

-plane.
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Figure 5.11: Two seleted equidensity surfaes of �

1

#(1)

(q). The image is reated by

rotating two of the equidensity urves of Fig. 5.10(d) around the q

z

-axis. Note that

the q

z

-axis is strethed out with respet to the other two axes.



Chapter 6

THREE-DIMENSIONAL

FORMULATION FOR THE

NUCLEON-DEUTERON

BREAK-UP PROCESS

In the previous hapters we desribed the 2N system treated in a 3D formulation as

derived in Chapter 3. The appliations in Chapter 4 for NN sattering and in Chapter

5 for the deuteron agree with experimental data and standard PW alulations. The 3D

formulation allows to alulate at lower as well as at higher energies with a �xed number

of LSE's, whereas in a formulation based on partial waves the number of LSE's inreases

with the energy.

In this hapter we extend the 3D formulation without partial wave deomposition to

three-nuleon (3N) sattering. This an briey be summarized as follows. Calulations

of 3N sattering take as input the o�-shell NN T-matrix elements orresponding to the

proess in the 2N subsystems. These o�-shell NN T-matrix elements are given through

the 3D approah presented in Chapter 3. Finally, the amplitude for the 3N sattering an

be alulated diretly as a funtion of Jaobi momenta desribing the relative motion of

the three nuleons. We take the Faddeev's sheme [1℄ for this purpose, whih is derived for

handling a three-partile system. Moreover we use only the lowest order of the multiple

sattering series provided by the Faddeev equations.

We hoose one of the 3N sattering hannels, the nuleon-deuteron (Nd) break-up

proess. We begin with a brief review on this proess. As in the 2N ase, this review is

meant to give a short summary of neessary formulas and de�nitions of some terminologies

and quantities used in the following text.

105
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We onsider only the leading term of the break-up amplitude, sine we are interested in

higher energies and would like to see then whether the leading term is suÆient to desribe

the proess. From now on we mean by the break-up amplitude (or simply the amplitude)

the leading term and by the full break-up amplitude (the full amplitude) the leading term

plus the resattering terms. After the brief review on the proess we derive the expression

for the break-up amplitude in terms of the T-matrix elements in the momentum-heliity

basis.

Up to this point the formulation is nonrelativisti. But in alulating higher energies

it is natural to expet some relativisti e�ets. Therefore, we proeed with inluding

relativisti orretion in our formulation by introduing relativisti kinematis, whih is

based on the work in Ref. [51℄.

6.1 Review on the Nuleon-Deuteron Break-Up Pro-

ess

This brief review overs kinematis, the amplitude, the Faddeev's equation and

observables of the nuleon-deuteron proess. These are given in more detail in, for exam-

ple, Refs. [5℄.

6.1.1 Kinematis of the Three-Nuleon System in Laboratory

and Center of Mass Referene Frames

In momentum spae a 3N system an be desribed by using Jaobi momenta as illustrated

in Fig.6.1(a). The Jaobi momenta p

1

and q

1

desribe a 3N system in the .m. frame and

together with the laboratory momentum K of the 3N enter of mass desribe the system

in the laboratory frame. Figure 6.1(b) shows the yli behavior of Jaobi momenta p

i

and q

i

(i = 1; 2; 3), whih all desribe the same 3N system.

For a 3N system, that is a system of three equal mass partiles, Jaobi momenta p

i

and q

i

are given as

p

i

=

1

2

(k

j

� k

k

) q

i

=

2

3

�

k

i

�

1

2

(k

j

+ k

k

)

�

i; j; k = f1; 2; 3g = yli; (6.1)

where k

i

is the laboratory momentum of the i

th

nuleon. Thus, p

i

is the relative mo-

mentum for the 2N subsystem of nuleons j and k (jk-subsystem) and q

i

is the relative

momentum of nuleon i to the jk-subsystem. These three pairs of p

i

, q

i

desribe the same

state. Hene,

jp

1

q

1

�i = jp

2

q

2

�i = jp

3

q

3

�i; (6.2)
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laboratory frame

(a) (b)

Figure 6.1: (a) A 3N system in momentum spae an be desribed in the .m. frame using

Jaobi momenta p

1

and q

1

and in the laboratory frame using the same Jaobi momenta

together with laboratory momentum K of the 3N enter of mass. (b) Jaobi momenta

are yli and all desribe the same system.

where jp

i

;q

i

; �i is de�ned as the free 3N state and � stands for the disrete quantum

numbers of the three nuleons. The relations between di�erent pairs of p

i

, q

i

an be

derived to be

p

j

= �

1

2

p

i

�

3

4

q

i

p

k

= �

1

2

p

i

+

3

4

q

i

q

j

= p

i

�

1

2

q

i

q

k

= �p

i

�

1

2

q

i

i; j; k = f1; 2; 3g = yli: (6.3)

In the Nd break-up proess one has in the �nal state three free nuleons, and in the

initial state the deuteron being at rest and a nuleon oming with laboratory momentum

k

lab

, orresponding to its laboratory nonrelativisti kineti energy E

lab

as

k

lab

=

q

2mE

lab

: (6.4)

Let us hoose without loss of generality this inoming nuleon as nuleon 1. Conservations

of total momentum and total energy in the laboratory frame are given by

k

lab

= k

1

+ k

2

+ k

3

(6.5)

k

2

lab

6m

+

3q

2

0

4m

+ E

d

=

(k

1

+ k

2

+ k

3

)

2

6m

+

3q

2

4m

+

p

2

m

; (6.6)

where E

d

is the deuteron binding energy, q

0

the relative momentum of the inoming

nuleon to the deuteron, p the relative momentum for the 23-subsystem and q the relative

momentum of nuleon 1 to the 23-subsystem:

q

0

=

2

3

k

lab

(6.7)
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p =

1

2

(k

2

� k

3

) (6.8)

q =
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�
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�
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(k
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�
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�
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3

k
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: (6.9)

In both sides of Eq. (6.6) the �rst term is the kineti energy of the 3N enter of mass,

whih is equal to

1

3

E

lab

. The other terms sum up to the onserved total energy E

m

in

the .m. frame. Thus,

E

m

=

3q

2

0

4m

+ E

d

=

3q

2

4m

+

p

2

m

: (6.10)

This Eq. (6.10) also provides the relation between q and p.

We will onsider the inlusive break-up proess, where only one nuleon is deteted in

the �nal state, whih is in this ase nuleon 1. In the experiment the detetor is plaed

at a ertain position and hene the sattering angle �

lab

is �xed. This sattering angle

�

lab

determines the maximum value k

1;max

of the magnitude of the momentum k

1

of the

deteted nuleon. Equation (6.9) leads to a quadrati equation in k

1

, with one of the

solutions being

k

1

=

1

3

k

lab

os �

lab

+

s

q

2

�

1

9

k

2

lab

sin

2

�

lab

: (6.11)

The other solution with negative square-root term is not onsidered, sine it is not

appropriate to �nd k

1;max

. Inserting into Eq. (6.11) the maximum value for q aord-

ing to Eq. (6.10) gives

k

1;max

=

1

3

k

lab

os �

lab

+

s

1

9

k

2

lab

(3 + os

2

�

lab

) +

4

3

mE

d

: (6.12)

6.1.2 Break-up Amplitude and the Faddeev's Equation

Let us de�ne U

full

0

as the full Nd break-up operator. For a system of idential partiles

the full break-up operator an be written as

U

full

0

= (1 + P )T

F

: (6.13)

Here P is a permutation operator de�ned as

P � P

12

P

23

+ P

13

P

23

: (6.14)

The �rst term performs a yli permutation, whih hanges the nuleons' labels, for

example from (123) to (231), and the seond term an antiyli permutation operator,
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whih hanges the nuleons' labels from (123) to (312). That notation T

F

in Eq. (6.13)

stands for the Faddeev operator obeying the Faddeev equation for the break-up proess

[1℄:

T

F

= TP + TG

0

PT

F

: (6.15)

Here T is NN T-matrix and G

0

the free 3N propagator given as

G

0

 

3q

2

0

4m

+ E

d

!

=

1

3q

2

0

4m

+ E

d

�H

0

; (6.16)

where H

0

is the free 3N hamiltonian in the .m. frame and we have applied the .m. energy

given in the previous subsetion.

Now we onsider only the leading term of the full break-up amplitude. This means we

take only the �rst term of the Faddeev operator given in Eq. (6.15). De�ning U

0

as the

break-up operator for this speial ase, we have

U

0

= (1 + P )TP: (6.17)

The Nd break-up amplitude U

0

(p;q) is then de�ned as

U

0

(p;q) �
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pqm
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s2

m

s3

�

1

�

2

�

3

�

�

�

�

U

0

�

�

�

�

q

0

m

0

s1

�

0

1

	

M

d

d

�

=

�

pqm

s1

m

s2

m

s3

�

1

�

2

�

3

�

�

�

�

(1 + P )TP

�

�

�

�

q

0

m

0

s1

�

0

1

	

M

d

d

�

: (6.18)

Here

jpqm

s1

m

s2

m

s3

�

1

�

2

�

3

i � jqm

s1

�

1

ijpm

s2

m

s3

�

2

�

3

i (6.19)

is the �nal not-antisymmetrized free state,

�

�

�q

0

m

0

s1

�

0
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M

d

d

E

�

�

�

�q

0

m

0

s1

�

0

1

E

�

�

�	

M

d

d

E

(6.20)

the initial state, in whih only the deuteron state is antisymmetrized, m

si

; �

i

(i = 1; 2; 3)

�nal spins and isospins of the three nuleons, m

0

s1

; �

0

1

initial spin and isospin of nuleon 1

and

�

�

�	

M

d

d

E

the deuteron state with M

d

being the projetion of its total angular momentum

along an arbitrary z-axis. In the amplitude U

0

(p;q) we suppress the initial quantum

numbers as well as the �nal disrete quantum numbers for simpliity.

6.1.3 Cross Setion and Spin Observables

Similarly to Eq. (2.21) for the NN system, the expression for the expetation value

D

�

(1)

�

�

(2)

�

�

(3)



E

f

of a general spin observable for the Nd break-up proess is given as

I

D

�

(1)

�

�

(2)

�

�

(3)
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�
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n

M�
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S

�

M

y

�

(1)

�

�

(2)

�
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(3)



o

; (6.21)
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where

I =

1

6

X

��

D

�

(1)

�

S

�

E

i

Tr

n

M�

(1)

�

S

�

M

y

o

(6.22)

is related to the di�erential ross setion summed over all possible �nal spin states. For

the break-up proess the sattering amplitude M is U

0

. Here �

�

(� = 0; 1; 2; 3) are the

2 x 2 matries given in Eq. (2.16) and S

�

(� = 0; 1; :::; 8) the 3 x 3 matries of the

general spin observables for spin-1 partiles, in this ase the target deuteron. They are

ombinations of the matries of the Cartesian omponents S

x

; S

y

; S

z

of angular momentum

S = 1

S

x

=

1

p

2

0

B

B

B

�

0 1 0

1 0 1

0 1 0

1

C

C

C

A

S

y

=

1

p

2
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B

B

B

�

0 �i 0

i 0 �i

0 i 0

1

C

C

C

A

S

z

=
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B

B

B

�

1 0 0

0 0 0

0 0 �1

1

C

C

C

A

: (6.23)

(See Ref. [52℄ for more details.) For the inlusive break-up proess one has to sum over

all diretions of the relative momentum p, thus,
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(2)

�

�

(3)
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=
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pTr

n

M�

(1)

�

S

�

M

y

�

(1)

�

�

(2)

�

�

(3)



o

6

R

d
^
p I

: (6.24)

We onsider ases where the deuteron is unpolarized, hene, S

�

= S

0

Æ

�0

= Æ

�0

.

Now we take a look at the spin averaged di�erential ross setion and some spin

observables, i.e. polarization, analyzing power and polarization transfer oeÆients. Data

for these observables are given in the laboratory frame. Hene, we have to alulate these

observables in the laboratory frame. Though we an �rst alulate observables in the

.m. frame and later onnet them with the ones in the laboratory frame, we hoose

to alulate diretly in the laboratory frame. This poses no diÆulty. Ref. [53℄ give

the relations between polarization transfer oeÆients in the .m. and in the laboratory

frames, inluding the ones with relativisti kinematis.

We use the unit vetors

^

l;
^
n;

^
s;

^

l

0

;
^
n

0

;
^
s

0

in the laboratory frame de�ned in Eqs. (2.26)-

(2.30), with hanges in notations suh that

^

k

1

is replaed by

^

k

lab

and

^

k

0

1

by

^

k

1

. Note that

the relation with the unit vetors in the .m. frame shown in Eqs. (2.26)-(2.30) is not

valid for the 3N sattering. See Ref. [53℄ for the general formulae. Choosing

^

k

lab

= ẑ and

^

k

1

in the xz-plane, the laboratory unit vetors in a Cartesian oordinate system are given

by Eq. (2.31).

The spin averaged di�erential ross setion in the .m. frame for the inlusive break-up

proess is given by [5℄

d

3

�

dqd
^
q

= (2�)

4

m

2

pq

2

3q

0

Z

d
^
p I

0

; (6.25)
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with
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0

(p;q)j
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: (6.26)

In order to ompare with experimental data we need to alulate the ross setion in the

laboratory frame, written as a funtion of the nuleon's outgoing kineti energy E

1

=

k

2

1

2m

and sattering angle �

lab

. Using Eq. (6.9) we get dq = dk

1

. Hene, the ross setion in

the laboratory frame is obtained as

d

5
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dE

1

d
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1
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: (6.27)

It should be pointed out that p is not independent, but determined by k

1

via Eqs. (6.10)

and (6.9).

In the following we give the polarization P

0

of the outgoing nuleon, the analyzing

power A

y

and polarization transfer oeÆients D

ij

�

1

6I

0

Tr
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j)M
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o

, where

we suppress the integration over
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(6.28)
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: (6.34)
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In obtaining Eqs. (6.28)-(6.34) we have applied Eq. (2.31), whih gives the laboratory

unit vetors in a Cartesian oordinate system.

6.2 Three-Dimensional Nuleon-Deuteron Break-Up

Amplitude

In this setion we derive an expression for the Nd break-up amplitude. Returning to

Eq. (6.18) the amplitude an be written in three terms as

U

0

(p;q) = U

(1)

0

(p;q) + U

(2)

0

(p;q) + U

(3)

0

(p;q); (6.35)

with

U

(1)

0

(p;q) � hpqm

s1

m

s2

m

s3

�

1

�

2

�

3

jTP

�

�

�q

0

m

0

s1

�

0

1

	

M

d

d

E

(6.36)
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For larity let us label the free 3N states as

jpq�i

i

= being the free 3N state, where nuleons j and k form a 2N jk-subsystem,

disrete quantum numbers listed in � are to be understood in

nuleons' order i, j, k and i,j,k = 1,2,3 are yli: (6.39)

If there is no label, that means the label is 1. Now we onsider U

(2)

0

(p;q). We apply the

permutation operator P
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P

23

in Eq. (6.37) to the �nal state. This gives
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In Eq. (6.40) the �nal state represents a free 3N system, where nuleons 1 and 2 form the

12-subsystem. Now we want to have the �nal state representing a system, where nuleons

2 and 3 form the 23-subsystem. We use the relation for Jaobi momenta given in Eq. (6.3)

and obtain
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Hene,
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Similarly for U
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Thus, U

(1)

0

(p;q), U

(2)

0

(p;q) and U

(3)

0

(p;q) all have the same form and di�er from eah

other only in values of their variables. Therefore, it is suÆient to work out a 3D expression

for one of them, whih we hoose U
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We begin by inserting twie the following ompleteness relation for the free 3N system
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into Eq. (6.36). This gives
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The NN T-matrix is alulated at energy E

p

:

E

p

�

p

2

m

=

3

4m

(q

2

0

� q

2

) + E

d

; (6.48)



114 6 Three-Dimensional Formulation for the Nuleon-Deuteron Break-Up Proess

whih does not neessarily orresponds to the intermediate relative momenta p

0

.

The permutation part of Eq. (6.47) is worked out as follows with the help of the

relations for Jaobi momenta given in Eq. (6.3):
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In the last equality we have arranged the delta funtions, in suh a fashion that it ontains

only one integration variable. Next de�ning
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Now we insert Eq. (6.51) into U
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In the last equality we made use of the antisymmetry of the deuteron state
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in Eq. (6.52) is worked out in the following, where

the deuteron state is expanded in partial waves. We reall the partial wave omponents
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(p) of the deuteron wave funtion, de�ned in Eq. (5.23).
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Here we meet the physial representation
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These NN T-matrix elements T
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in Eq. (3.73). The solution of Eq. (3.73) would be T

�St

��

0

(p; �; �

p

;E

p

), whih are T-matrix

elements in the momentum-heliity basis with initial momentum in the z-diretion and
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without its azimuthal dependene. Therefore, T

�St

��

0

(p;�;E

p

) have to be onneted to

T

�St

��

0

(p; �; �

p

;E

p

). This is done as follows. Let us regard T-matrix elements T

�St

��

0

(p;p

0

;E

p

).

We rotate T

�St

��

0

(p;p

0

;E

p

) so that the initial momentum points in the z-diretion, i.e. p

0

beomes p

0

^
z:

T

�St

��

0

(p;p

0

;E

p

) =

�a

hp;
^
pS�; tjT (E

p

) jp

0

;
^
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^
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^
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^
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^
zS�
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: (6.57)

The ation of R

y

(
^
p

0

) on state jp; p̂S�i leads to two suessive rotations as

R

y

(
^
p

0

) jp; p̂S�i = R(0;��

0

;��

0

)R(��0) jp
^
z;

^
zS�i : (6.58)

This is evaluated in detail in Appendix F. Here we give only the results:

R

y

(
^
p

0

) jp; p̂S�i = e

i�


R(�

00

�

00

0) jp
^
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^
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i�


jp

00
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^
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00

S�i ; (6.59)

with

os �

00

= os � os �

0

+ sin � sin �

0

os(�� �

0

) (6.60)
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) (6.61)

e

i�


=

P

S

N=�S

D

S�

N�

0

(�

0

�

0

0)D

S

N�

(��0)

D

S

�

0

�

(�

00

�

00

0)

: (6.62)

Thus,
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); (6.63)

where in the last equality we have applied the relation in Eq. (3.66). The exponential

fator e

i(�

0

�
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an be alulated as
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: (6.64)
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By inserting the relation Eq. (6.63) for T

�St

��

0

(p;�;E

p

) into Eq. (6.56) we arrive at our

�nal expression for U

(1)

0

(p;q) as
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with

os �

0

= os �

p
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�
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p
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) (6.66)
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: (6.67)

6.3 Relativisti Kinematis

In this setion we introdue relativisti kinematis into the formulation given in the previ-

ous setions. Thus, we reevaluate the maximum value k

1;max

of magnitude of the nuleon's

outgoing momentum and the Jaobi momenta p and q. We derive S-matrix elements for

the break-up proess and the spin averaged di�erential ross setion. We adopt a formu-

lation in Ref. [51℄, whih is given for an arbitrary two-partile system. Note that in this

setion energy means relativisti energy, i.e. E =

p

m

2

+ k

2

, however, we do not use a

4-vetor notation. Thus, here k is the magnitude of a 3-vetor k. This is in ontrast to

Ref. [51℄, where k is a 4-vetor and k is its 3-vetor omponent.

6.3.1 Maximum of Magnitude of Nuleon's Outgoing Mo-

mentum

Conservations of total energy and total momentum for the Nd break-up proess are given

by

m

d

+ E

lab

= E

1

+ E

2

+ E

3

� E

1

+ E

23

(6.68)

k

lab

= k

1

+ k

2

+ k

3

� k

1

+ k

23

; (6.69)

where m

d

is the deuteron rest mass and E

i

(i = lab; 1; 2; 3) relativisti energies

orresponding to k

i

(i = lab; 1; 2; 3). In Eqs. (6.68) and (6.69) we de�ne E

23

as total
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energy and k

23

as total momentum of the 23-subsystem in the laboratory frame. The

quantities E

23

and k

23

are onneted by

E

2

23

� k

2

23

�M

2

23

� 4m

2

; (6.70)

whih is Lorentz invariant. Here M

23

is alled the invariant mass of the 23-subsystem,

equal to the total energy of the 23-subsystem in its .m. frame. The minimal value of M

23

is 2m, where the two nuleons are at rest in the .m. frame of the 23-subsystem. Together

these three equations (6.68), (6.69) and (6.70) determine the maximum value k

1;max

of

the magnitude of the nuleon's outgoing momentum as shown in the following.

Inserting Eqs. (6.68) and (6.69) into Eq. (6.70) leads to
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This is a quadrati equations in k

1

Ak

2

1

+Bk

1

+ C � 0; (6.72)

with

A = 4fk
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g < 0 (6.73)
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C = f(E

lab

+m

d

)

2

� 3m

2

� k

2

lab

g

2

� 4(E

lab

+m

d

)

2

m

2

> 0: (6.75)

Equation (6.72) is skethed in Fig. 6.2. Thus, k

1;max

ours where Eq. (6.72) equals zero

and is obtained as

k

1;max

=

�B �

p

B

2

� 4AC

2A

: (6.76)
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k1,max k1

Ak2 Bk C++1 1

Figure 6.2: A sketh of Eq. (6.72).

6.3.2 Jaobi Momenta

A system desribed by (E;k) in one frame an be desribed in other frame by (E

0

;k

0

) by

means of a Lorentz transformation L(v), where v is the relative veloity of the new frame

to the old frame. Thus [51℄,

(E

0

;k

0

) � L(v)(E;k); (6.77)

where

k

0

= k+ ( � 1)(k �
^
v)

^
v � Ev (6.78)

E

0

= (E � k � v) (6.79)

 �

1

p

1� v

2

: (6.80)

Using Eqs. (6.77)-(6.80) with the appropriate veloity v = u we an transform our 3N

system from the laboratory frame to the .m. frame and �nd the orresponding Jaobi

momenta p and q.

First we take the 23-subsystem and derive p. We bring the 23-subsystem from the

laboratory frame to its .m. frame (the 23-frame) by the following Lorentz transformation

u =

k

23

E

23

(6.81)
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) = L(u)(E

3
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): (6.83)

Here k

0

i

and E

0

i

(i = 2; 3) are momenta and energies of nuleons 2 and 3 in the 23-frame.

Aording to Eq. (6.78) the Jaobi momentum p, de�ned by the transformation given in

Eqs. (6.82)-(6.83), is given by the following two equations
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where we have used
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: (6.86)

Instead of two expressions de�ning p we want to have one expression as a ombination of

Eqs. (6.84) and (6.85). Subtrating Eq. (6.85) from Eq. (6.84) leads to
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Next using
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we get the �nal expression for p as
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Thus, p in Eq. (6.89) onsists of a nonrelativisti part (the �rst term) and a relativisti

orretion (the seond term), whih nonrelativistially vanishes (E

2

= E

3

' m).

The energies E

0

2

and E

0

3

are given as
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We obtain the total energy M

23

in the 23-frame as
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: (6.91)

Using Eqs. (6.91) and (6.68)-(6.70) the magnitude of p an be alulated as
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Here we would like to give some remarks. Sine we onsider the inlusive Nd break-up

proess, we sum over all diretions of p, whih are independent of the kinematis (E

1

;k

1

)

of the single deteted nuleon. Therefore, a vetorial expression of p, suh as the one in

Eq. (6.89), is not required. It is the expression given in Eq. (6.92) for the magnitude of p,

whih is needed. We have nevertheless worked out Eq. (6.89) to omplete the presentation.

Now we derive the Jaobi momentum q in a similar way as we derived p. First we

de�ne some notation, namely k

0

1

and E

0

1

be the momentum and the energy of nuleon 1

in the .m. frame, k

0

23

and E

0

23

the momentum and the energy of the 23-subsystem in the

.m. frame. E

0

is the total energy in the laboratory frame given by
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lab
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: (6.93)

Here we also de�ne M

0

as the total energy in the .m. frame or the invariant mass of the

system

M

0

� E
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23

; (6.94)

whih is onneted to the total energy E

0

and the total momentum k

lab

in the laboratory

frame as given by the following Lorentz invariant relation
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Thus, with given E

0

and k
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one an alulate M
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as given by
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whih is onserved.

To bring the system from the laboratory frame to the .m. frame we apply the following

Lorentz transformation
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with the orresponding  fator
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The Jaobi momentum q is given by two equations
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and the energies E

0

1

, E

0

23

and M

0

in the .m. frame are given in terms of the magnitudes

of Jaobi momenta p and q as
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: (6.104)

As in ase of p, we want to have one expression for q as a ombination of Eqs. (6.100)

and (6.101). Here a vetorial expression of q is needed, sine q depends on the kinematis

(E

1

;k

1

) of the deteted nuleon.

Subtrating Eq. (6.101) from Eq. (6.100) leads to
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Using Eqs. (6.93)-(6.95) and (6.102)-(6.104) we get
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We insert Eq. (6.106) into Eq. (6.105) and obtain the �nal expression for q as
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124 6 Three-Dimensional Formulation for the Nuleon-Deuteron Break-Up Proess

In the last equality we have applied total momentum onservation given in Eq. (6.69).

The magnitude of q is alulated using Eq. (6.104) as follows:
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Thus,

q =
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0

q
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� (5m
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� 16m

2

(m

2
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where M

0

is given in Eq. (6.96). Equation (6.109) also shows the relation between q and

p, if relativity is taken into aount.

Now let us onsider the initial situation and �nd out the Jaobi momentum q

0

, the

energies E

0

lab

of the inoming nuleon and E

0

d

of the deuteron in the .m. frame. Replaing

in Eq. (6.105) k

1

with k

lab

, E

1

with E
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, k

23

with zero and E

23

with m

d

the Jaobi

momentum q
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is given as
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Using Eq. (6.79) E

0

lab

and E

0

d

are given as
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0

m
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1
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Hene, E

0

lab

and E

0

d

sum up to M

0

= E

0

1

+E

0

23

as required by total energy onservation in

the .m. frame.

6.3.3 S-Matrix and Cross Setion

Here we derive S-matrix elements in the lab frame by using relativisti kinematis and

onnet with the Nd break-up amplitude. We neglet the boost e�ets on the magneti

spin quantum numbers, in other words we do not take Wigner rotation into aount.

From the S-matrix elements we derive the spin averaged di�erential ross setion by using

the standard relativisti time-dependent sattering theory.

Suppressing all disrete quantum numbers we de�ne S-matrix elements in the labora-

tory frame as

S(k

1
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3
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jSjk

lab

k

d

i (6.113)

and in the .m. frame as

S(p;q) � hpqjSjq

0

i � hpqjSjq

0

i: (6.114)

One has to bear in mind that there is the deuteron state j	

d

i in the initial state in the

.m. frame, whih is here suppressed. The deuteron laboratory momentum k

d

is given

for larity though it has a value of zero. In Eq. (6.114) p, q, q

0

are the Jaobi momenta

given in Eqs. (6.89), (6.107), (6.110), respetively. The state jk

1
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i is related to jpqi,

and the state jk
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The Jaobian J(k

2

;k

3

) of the transformation in Eq. (6.115) from variables (k
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3

) to
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) is given as [51℄
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where the last equality results by means of Eq. (6.91) for M

23

. Similarly, the Jaobians

J(k
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) in Eq. (6.115) and J(k
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) in Eq. (6.116) are given as
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One therefore arrives at the relation between S(k

1

;k

2

;k

3

) and S(p;q) as
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where the delta funtion ensures total momentum onservation.

We proeed to onnet S(k

1

;k

2

;k

3

) with the amplitude U

0

(p;q), de�ned in Eq. (6.18).

In fat U

0

(p;q) is the T-matrix element for the Nd break-up proess, whih is related to

S(p;q) as given in Eq. (2.5), but without the �rst term. Thus,
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Inserting Eq. (6.121) into Eq. (6.120) leads to
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Next we insert into Eq. (6.122) the identity
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1

The identity in Eq. (6.123) an be proven as follows. Take E

0

and E as total energies in the laboratory

frame, K

0

and K the orresponding total momenta, M

0

and M total energies in the .m. frame, related

as
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The energies E
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whih proves the identity given in Eq. (6.123).
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and this gives
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As the �nal step to simplify the expression we de�ne a funtion �(p;q) as
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and thus obtain the relation between S(k

1

;k

2

;k

3

) and U

0

(p;q) as
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At this point let us return to U

0

(p;q), whih has been derived in Setion 6.2 nonrela-

tivistially. To ahieve more onsisteny with the relativisti kinematis being introdued,

the amplitude U

0

(p;q) is alulated using relativisti values of its kinematis variables.

These variables are the Jaobi momenta p, q, q

0

and the energy, for whih the NN

T-matrix elements are alulated. This is the kineti energy in the 23-subsystem. Take

for example U

(1)

0

(p;q), given in Eq. (6.65). The Jaobi momenta p, q, q

0

are given in

Eqs. (6.89), (6.107), (6.110), respetively. The energy E

p

, for whih T
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is alulated, is given as
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di�erent from the nonrelativisti one, given in Eq. (6.48). In Eq. (6.127) 2m is the rest

mass of the 23-subsystem, thus, E

p

is the kineti energy in the 23-subsystem.

Now we derive the ross setion using the standard relativisti sattering theory. The

delta funtions in Eq. (6.126) an be evaluated, with the arguments being zero, as
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where V and T stand for the whole normal spae volume and time. Hene, the squared

absolute value of the S-matrix element S(k

1

;k

2

;k

3

) is given as
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and the transition rate W from initial to �nal state per unit volume results as
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The outgoing ux dN , whih is the number of outgoing nuleons per unit area and time,

with momenta within a range of dk

1
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is given as
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while the inoming ux j is given as
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The target density is j

0

= (2�)

�3

. Thus, the di�erential ross setion d� is obtained as
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For the inlusive Nd break-up proess the di�erential ross setion is alulated as a

funtion of the kineti energy E

k;1

and diretion

^

k

1

of the deteted nuleon. The kineti

energy E

k;1

is given as

E

k;1

= E

1

�m; (6.134)

and thus,

dk
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= dk

1
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1
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^
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1

= E

1

k

1

dE

k;1

d

^

k

1

: (6.135)
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We insert Eq. (6.135) into Eq. (6.133), and end up with
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: (6.136)

In arriving to Eq. (6.136) we have used Eq. (6.117) for J(k

2

;k

3

) and

dE

23

= d

q

M

2
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+ k

2

23

= d

q

4(m

2

+ p

2

) + k
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=

4p

E
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dp: (6.137)

We de�ne a funtion �(p; q) as
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allowing the di�erential ross setion to be written in a similar fashion as the nonrela-

tivisti one in Eq. (6.27), that is

d�

dE

k;1

d

^
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1

= (2�)

4

�(p; q)pk

1
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lab

1

6

X
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m

s3

m

0

s1

M

d

Z

d
^
p jU

0

(p;q)j

2

; (6.139)

where we have restored the summation over �nal spins and the averaging over initial spins

states. Nonrelativistially the funtion �(p; q) redues to m

3

, and the di�erential ross

setion to the nonrelativisti expression in Eq. (6.27).



130 6 Three-Dimensional Formulation for the Nuleon-Deuteron Break-Up Proess



Chapter 7

APPLICATION TO THE

PROTON-NEUTRON CHARGE

EXCHANGE REACTION

In this hapter we apply the 3D formulation derived in the last hapter for the Nd break-

up proess to the (p,n) harge exhange reation and show numerial results together with

omparisons to experiment. We onsider the pd break-up proess, in whih a proton is

direted towards an unpolarized deuteron target. The deuteron is then broken up into

a neutron and a proton, and �nally two protons and one neutron satter in diretions,

whih are onstrained by energy and momentum onservation. In the experiments we

are going to analyze, the neutron is deteted, while the two protons are not deteted.

Hene, in alulating the observables all possible diretions of the two protons are taken

into aount. In fat, energy and momentum onservations allow to sum over the relative

diretions
^
p between the two protons and not over the exat diretions of their motions.

We alulate the spin averaged di�erential ross setion and some spin observables, whih

are the neutron polarization P

0

, the analyzing power A

y

and the polarization transfer

oeÆients D

ij

. The observables P

0

, A

y

and D

ij

are given in Eqs. (6.28)-(6.34), where the

integration over
^
p is suppressed. The spin averaged di�erential ross setion is given in

Eqs. (6.27) and (6.139), where in the latter relativisti kinematis is used. Corresponding

to eah observable, we use the following notation

d(p; n)pp orresponds to spin averaged di�erential ross setion (7.1)

d(p; ~n)pp orresponds to P

0

(7.2)

d(~p; n)pp orresponds to A

y

(7.3)

d(~p; ~n)pp orresponds to D

ij

: (7.4)

131
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Here the arrows mean that either the partile is polarized or the polarization of the partile

is measured. The alulations are performed using the NN potentials Bonn-B and AV18.

The numerial realization is desribed in Appendix G.

We show the results in the following order. Firstly we ompare our 3D alulations

with PW alulations of the �rst order term. Next we ompare with the PW alulations,

whih take the full break-up amplitude into aount. We reall that we use the term "full

break-up amplitude" for the leading term plus the resattering terms and the term "break-

up amplitude" for only the leading term. Thus, here one an see the e�ets of multiple

sattering in the proess. Last we ompare between 3D alulations with nonrelativisti

kinematis and the ones, whih use relativisti kinematis. This will show the e�ets of

relativity. Finally we ompare with data at various energies.

7.1 Comparison with Partial-Wave Calulations

For a 3N sattering using partial waves one has to hek onvergene in two di�erent

plaes. The �rst is the 2N-subsystem, for whih the NN T-matrix is alulated. The

seond is the 3N system itself. The NN T-matrix is alulated by inluding 2N states up

to a NN total angular momentum j. Then using the NN T-matrix as input the Nd break-

up amplitude is alulated by inluding 3N states up to a 3N total angular momentum

J . In this setion we ompare our 3D alulations to PW alulations [54, 55℄. The

3D alulations an be regarded as the ideal PW alulations, whih inlude an in�nite

number of partial waves.

In Figs. 7.1-7.4 we show the 3D alulations and the PW alulations with j = 5

and J = 31=2 for the pd break-up proess at E

lab

= 16 MeV and neutron labora-

tory sattering angle �

lab

= 13

o

. The alulations are based on the NN potentials

Bonn-B and AV18. Figures 7.1(a) and 7.1(b) show the spin averaged di�erential ross

setion (abbreviated ross setion) and the polarization transfer oeÆient D

nn

, res-

petively, over the neutron outgoing energies E

n

. Figures 7.2(a) and 7.2(b) display the

analyzing power A

y

and the neutron polarization P

0

. Figures 7.3(a) and 7.3(b) show

the polarization transfer oeÆients D

ll

and D

ss

. Figures 7.4(a) and 7.4(b) show the

polarization transfer oeÆients D

sl

and D

ls

. At E

lab

= 16 MeV the 3D and the PW

alulations agree with eah other. There is an exeption for A

y

around E

n

= 3 MeV,

where the urves of the PW alulations osillate over the smooth urves of the 3D al-

ulations. Now we go to a higher energy. In Figs. 7.5-7.8 the same set of observables is

shown for the same sattering angle �

lab

= 13

o

but at a higher energy E

lab

= 197 MeV.

At this energy the 3D alulations disagree with the PW alulations, whih again take
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Figure 7.1: The 3D and the PW alulations (j = 5; J = 31=2) for (a) the spin averaged

di�erential ross setion and (b) the polarization transfer oeÆient D

nn

in the pd break-

up proess at E

lab

= 16 MeV and neutron laboratory sattering angle �

lab

= 13

o

. The NN

potentials used are Bonn-B and AV18.
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Figure 7.2: Same as in Fig. 7.1, but for (a) the analyzing power A

y

and (b) the neutron

polarization P

0

.
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Figure 7.3: Same as in Fig. 7.1, but for the polarization transfer oeÆients (a) D

ll

and

(b) D

ss

.
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Figure 7.4: Same as in Fig. 7.1, but for the polarization transfer oeÆients (a) D

sl

and

(b) D

ls

.
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j = 5 and J = 31=2. In Fig. 7.5(a) the height of the ross setion peak in the PW alula-

tion for the Bonn-B is about 14% lower than that in the 3D alulation and about 8% for

the AV18. Figure 7.5(b) shows disagreements between the 3D and the PW alulations

for D

nn

, whih beome more visible as E

n

inreases (E

n

> 100 MeV). And this behavior

is also seen for the other polarization transfer oeÆients in Figs. 7.7 and 7.8 exept for

D

ss

in Fig. 7.7(b). For A

y

and P

0

in Fig. 7.6 the disagreements our mostly for E

n

between 70 and 130 MeV, that is around the middle of the E

n

-range for E

lab

= 197 MeV

and �

lab

= 13

o

. To give more examples in Figs. 7.9-7.12 we show again the same set of

observables at E

lab

= 197 MeV but for a larger sattering angle �

lab

= 24

o

. Again we see

disagreements between the 3D and the PW alulations, whih take j = 5 and J = 31=2.

Here the ross setion peak in the PW alulation for the Bonn-B is about 2% higher than

the orresponding peak in the 3D alulation and about 4% for the AV18. Now at this

angle one also sees in Fig. 7.11(b) disagreements between the 3D and the PW alulations

for D

ss

. As at �

lab

= 13

o

the disagreements for the polarization transfer oeÆients D

ij

our mostly for the seond half of the E

n

-range, if one goes from lower E

n

to higher E

n

.

For A

y

and P

0

in Fig. 7.10 the disagreements our near the middle and the maximum of

the E

n

-range. All these indiate that at E

lab

= 197 MeV the PW alulations with j = 5

and J = 31=2 have not onverged to the ideal PW alulations, whih inlude all partial

waves, as represented by the 3D alulations.

In order to hek the onverging proess of the PW alulations at E

lab

= 197 MeV

we ompare to some PW alulations with inreasing j and J , even up to j = 7. Figures

7.13 and 7.16 show suh omparisons at �

lab

= 13

o

for the Bonn-B. Here we show

only for regions of E

n

, where the onverging proesses are better seen. For the E

n

-

region shown the PW alulation with j = 7 and J = 31=2 an be onsidered to have

already onverged for D

ss

in Fig. 7.15(b). But for the other observables even with j = 7

and J = 31=2 the PW alulations do not onverge to the 3D alulations. Next we

see that inreasing j improves the PW alulations to reah the 3D alulations faster

than inreasing J . For A

y

(Fig. 7.14(a)) and the polarization transfer oeÆients D

nn

(Fig. 7.13(b)), D

ll

(Fig. 7.15(a)), D

sl

(Fig. 7.16(a)) and D

ls

(Fig. 7.16(b)) the onvergenes

of the PW alulations to the 3D alulations at E

lab

= 197 MeV may be ahieved with

j = 9, but unfortunately this would not be the ase for the ross setion (Fig. 7.13(a))

and P

0

(Fig. 7.14(b)). For P

0

and moreover the ross setion the onverging proesses are

muh slower than those for A

y

, D

nn

, D

ll

, D

sl

and D

ls

. Let us take a look at the ross

setion in Fig. 7.13(a). With j = 7 and J = 31=2 the ross setion peak is raised to be

about 6% higher than the one resulting from the PW alulation with j = 5; J = 31=2,

but still it is about 9% lower than the ross setion peak from the 3D alulation. If by
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Figure 7.5: Same as in Fig. 7.1, but at E

lab

= 197 MeV and �

lab

= 13

o

.
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Figure 7.6: Same as in Fig. 7.5, but for (a) the analyzing power A
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and (b) the neutron

polarization P
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Figure 7.7: Same as in Fig. 7.5, but for the polarization transfer oeÆients (a) D

ll

and

(b) D

ss

.
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Figure 7.8: Same as in Fig. 7.5, but for the polarization transfer oeÆients (a) D
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and

(b) D

ls

.
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Figure 7.9: Same as in Fig. 7.5, but at �

lab

= 24

o

.
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Figure 7.11: Same as in Fig. 7.7, but at �
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taking j = 9; J = 31=2 one would expet to have the ross setion peak further raised

by at most 6%, then it is still about 4% lower than the peak from the 3D alulation.

In fat one should take into aount that as one ontinuously inreases the number of

partial waves the improvement is getting less and less, otherwise the alulation will not

onverge. Therefore, it is unlikely for the ross setion that by always inreasing j > 7

the PW alulations will soon onverge to the 3D alulation. It is worthy to mention

that with j = 5 and J = 31=2 one has atually reahed the nowadays limits of the PW

alulations. Therefore, for energies around 200 MeV and higher it is not feasible to

perform a PW alulation, whih onverges to the orresponding 3D alulation.

Now we go to energies below 200 MeV to see where 3D alulations start to apreiably

disagree with PW alulations. We hoose the PW alulations, whih take j = 7; J =

31=2 and are based on the NN potential Bonn-B. From the investigation for E

lab

= 197

we know that for the ross setion the PW alulation onverges slowliest than for other

observables. Therefore, we shall look at the disagreement for the ross setion peak.

Nevertheless, we will show all the investigated observables. In Figs. 7.17-7.20 we display

the 3D and the PW alulations for E

lab

= 65 MeV and �

lab

= 13

o

. At this energy one an

hardly see disagreements between the 3D and the PW alulations. There is an exeption

for A

y

in Fig. 7.18(a) around E

n

= 10 MeV, to whih a similar disagreement is also seen at

E

lab

= 16 MeV around E

n

= 3 MeV (see Fig. 7.2(a)). At E

lab

= 65 MeV the height of the

ross setion peak in Fig. 7.17(a) from the PW alulation is about 0.5% lower than the

one from the 3D alulation. In Figs. 7.21-7.24 we show the alulations for E

lab

= 100

MeV and �

lab

= 13

o

. For the polarization transfer oeÆients D

ij

one an hardly see

disagreements between the 3D and the PW alulations. For A

y

in Fig. 7.22(a) one sees

around E

n

= 20 MeV similar disagreements to the ones ouring at E

lab

= 65 MeV and

E

n

= 10 MeV (see Fig. 7.18(a)). At E

lab

= 100 MeV the disagreement for the ross

setion peak in Fig. 7.21(a) between the two alulations is about 1.7%, thus, it is more

than three times larger than the disagreement at E

lab

= 65 MeV. Now if E

lab

is getting

higher than 100 MeV the disagreement for the ross setion peak will quikly inrease.

We onlude that for E

lab

= 100 MeV and lower PW alulations with j = 7; J = 31=2

an be used to desribe Nd break-up proess reasonably well, but for E

lab

> 100 MeV the

alulations are inadequate. But with j = 7; J = 31=2 this means that one has to pay

muh e�ort to perform the alulations up to the limits. Thus, aording to this insight

for E

lab

> 100 MeV PW alulations annot be used to well desribe the Nd break-up

proess.
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Figure 7.13: Convergene tests of the PW alulations for (a) the spin averaged ross

setion and (b) the polarization transfer oeÆient D
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in the pd break-up proess at

E

lab

= 197 MeV and �

lab

= 13

o

. The NN potential used is Bonn-B.
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Figure 7.14: Same as in Fig. 7.13, but for (a) the analyzing power A

y

and (b) the neutron

polarization P

0
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Figure 7.15: Same as in Fig 7.13, but for the polarization transfer oeÆients (a) D

ll

and

(b) D

ss

.
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Figure 7.16: Same as in Fig 7.13, but for the polarization transfer oeÆients (a) D

sl

and

(b) D

ls

.
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Figure 7.17: The 3D and PW alulations for (a) the spin averaged di�erential ross

setion and (b) the polarization transfer oeÆient D

nn

in the pd break-up proess at

E

lab

= 65 MeV and �

lab

= 13

o

. The NN potential used is Bonn-B. The PW alulations

take j = 7; J = 31=2.
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Figure 7.18: Same as in Fig. 7.17, but for (a) the analyzing power A

y

and (b) the neutron

polarization P
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Figure 7.19: Same as in Fig. 7.17, but for the polarization transfer oeÆients (a) D

ll

and

(b) D

ss

.
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Figure 7.20: Same as in Fig. 7.17, but for the polarization transfer oeÆients (a) D

sl

and (b) D

ls

.
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Figure 7.21: Same as in Fig. 7.17, but at E

lab

= 100 MeV and �

lab

= 13

o

.
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Figure 7.22: Same as in Fig. 7.21, but for (a) the analyzing power A

y

and (b) the neutron

polarization P
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Figure 7.23: Same as in Fig. 7.21, but for the polarization transfer oeÆients (a) D

ll

and

(b) D

ss

.
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Figure 7.24: Same as in Fig. 7.21, but for the polarization transfer oeÆients (a) D

sl

and (b) D

ls

.
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7.2 Contributions from the Resattering Terms

In the present work we inlude only the leading term of the full Faddeev Nd break-up

amplitude and leave out the resattering terms. It an be expeted that with inreasing

energy the importane of the resattering terms will have dereased. This an, however,

depend on the kinematial regime. Now unfortunately a 3D full Faddeev alulation does

not yet exist to ompare with. Thus, we are fored to ompare with existing PW full

Faddeev alulations, whih atually an be expeted to be reliable only below E

lab

' 100

MeV as infered from our omparisons in the last setion in �rst order in the NN T-matrix.

Nevertheless the omparisons with the PW full Faddeev alulations at some higher

energies will provide some hints about the importane of resattering e�ets. This insight

will then be some orientation about the usefullness of omparing our 3D alulations in

�rst order in the NN T-matrix with data. Sine now we shall also show experimental

data, it is neessary to disuss the NN potentials Bonn-B and AV18, before we ontinue

to disuss multiple sattering e�ets. As already mentioned in Chapter 4 the two NN

potentials are de�ned below 350 MeV NN laboratory energy. This orresponds to the

NN .m. energy of 175 MeV. In the Nd break-up proess and in our approximations

of keeping the NN T-matrix in �rst order only the energy for the NN T-matrix is �xed

in terms of the �nal nuleon's laboratory momenta and the projetile's energy. Thus,

we an determine the maximum NN .m. energy ouring in the 2N subsystem. At

E

lab

' 200 MeV the maximum NN .m. energy ouring in the 2N-subsystem is about

133.4 MeV (refer to Setion G.4). Therefore, for the Nd break-up proess at E

lab

' 200

MeV the NN T-matrix elements obtained from the two NN potentials are reasonably

orret. It will be interesting to see the e�ets from the o�-shell part of the NN T-matries,

whih are somewhat di�erent between the two NN potential as shown in Chapter 4. In

a more omplete dynamial piture one would have to add also a proper 3N fore. Thus,

ontributions from the o�-shell behavior of the NN T-matrix and the 3N fore would

balane eah other and the results should be invariant under exhange of the models [56℄.

Here in our restrited dynamial input we an only get insight, whether the NN potentials

Bonn-B and AV18 yield essentially the same results or di�erent ones. For E

lab

higher than

263 MeV the maximum NN .m. energy is higher than 175 MeV, thus, beyond the energy

range, where the NN potentials Bonn-B and AV18 are de�ned. Therefore, this an be one

soure of de�ienies in desribing the Nd break-up proess at E

lab

> 263 MeV.

In Figs. 7.25-7.40 we show the 3D alulations, the PW full Faddeev alulations [54℄

and experimental data [18℄ at E

lab

= 197 MeV and various sattering angles �

lab

for the

investigated observables in the pd break-up proess. The PW full Faddeev alulations
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take j = 5; J = 31=2 for the NN potential AV18 and j = 4; J = 31=2 for the NN potential

Bonn-B. In the last setion we have seen that at E

lab

' 100 MeV one has already reahed

the limits of the PW alulations to get onverged results. In that investigation the

ase was simpler, sine one took only the leading term of the full Faddeev Nd break-up

amplitude. Thus, one ould inlude partial waves up to j = 7; J = 31=2. Now the ase

is more omplex, sine the resattering terms are also inluded. Hene, we are provided

with the PW alulations only with a lower number of partial waves. Nevertheless, it is

suÆient to qualitatively see multiple sattering e�ets. Let us take a look at Figs. 7.25-

7.28, whih show the observables at �

lab

= 13

o

. Figure 7.25(a) displays the ross setion.

The sharp peak in the PW alulations lose to the highest neutron energy E

n

is due to

the �nal state interation (FSI) between the two protons, whih are not deteted. The

FSI takes plae if the two protons are moving together in the same diretion. Thus, the

relative momentum between the two protons is zero and this happens if the neutron takes

most of the energy. The FSI is not taken into aount in the 3D alulation and the

peak is not deteted in the experiment due to the E

n

-resolution. Therefore, here we an

put the FSI aside. The �gure shows that the inlusion of the resattering terms lowers

the theoretial preditions for the ross setion. Now among the spin observables the

analyzing power A

y

turns out to be suitable to see resattering e�ets in the pd break-up

proess. The inlusion of the resattering terms for A

y

in Fig. 7.26(a) greatly improves

the theoretial preditions to math the experimental data better. The e�et is as if it

tilts A

y

by raising its one end at lower E

n

. For the other spin observables the inlusion

of the resattering terms leads to smaller e�ets than for A

y

. In some ases like, for

example, for D

ll

in Fig. 7.27(a) at lower E

n

it improves the theoretial preditions. But

in some other ases like for D

ss

in Fig. 7.27(b) it auses worse agreements with the data.

Next in Figs. 7.29-7.32 we show the same set of observables at a di�erent sattering angle

�

lab

= 24

o

. Again for the ross setion in Fig. 7.29(a) we see the resattering e�ets

as lowering the theoretial ross setion peak. Now the theoretial ross setion peaks

overlap with the data. For A

y

in Fig. 7.30(a) we also see the similar resattering e�ets

as at �

lab

= 13

o

, whih is like a tilt of A

y

by raising its one end at lower E

n

. In addition

we also see at E

n

towards its maximum that the inlusion of the resattering terms drops

Ay. For other observables we see some various hanges aused by the resattering terms.

At other sattering angles �

lab

= 37

o

in Figs. 7.33-7.36 and �

lab

= 48

o

in Figs. 7.37-7.40 we

see a similar situation for the investigated observables. At this point we have to onlude

that at E

lab

' 200 MeV the resattering terms still give muh ontributions to the full pd

break-up amplitude and hene annot be negleted.
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Figure 7.25: The 3D and the PW alulations for (a) the spin averaged di�erential ross

setion and (b) the polarization transfer oeÆient D

nn

in the pd break-up proess at

E

lab

= 197 MeV and �

lab

= 13

o

. The NN potentials used are Bonn-B and AV18. The 3D

alulations take the pd break-up amplitude, while the PW alulations take the full pd

break-up amplitude. The experimental data are taken from Ref. [18℄. The sharp peak in

the PW alulations for the ross setion lose to the highest neutron outgoing energy E

n

is due to the �nal state interation between the two proton, whih are not deteted. See

text for more details.
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Figure 7.26: Same as in Fig. 7.25, but for (a) the analyzing power A

y

and (b) the neutron

polarization P
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Figure 7.27: Same as in Fig. 7.25, but for the polarization transfer oeÆients (a) D

ll

and

(b) D

ss

.
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Figure 7.28: Same as in Fig. 7.25, but for the polarization transfer oeÆients (a) D

sl

and (b) D

ls

.
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Figure 7.29: Same as in Fig. 7.25, but at �

lab

= 24

o

.



166 7 Appliation to the Proton-Neutron Charge Exhange Reation

3D AV18

3D Bonn-B

PW full AV18

PW full Bonn-B

exp.

E

n

[MeV℄

A

y

180145110

0.24

0.07

-0.10

(a)

3D AV18

3D Bonn-B

PW full AV18

PW full Bonn-B

exp.

E

n

[MeV℄

P

0

180145110

0.35

0.20

0.05

(b)

Figure 7.30: Same as in Fig. 7.26, but at �

lab

= 24

o

.
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Figure 7.31: Same as in Fig. 7.27, but at �

lab

= 24

o

.
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Figure 7.32: Same as in Fig. 7.28, but at �

lab

= 24

o

.
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Figure 7.33: Same as in Fig. 7.25, but at �

lab

= 37

o

.
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Figure 7.34: Same as in Fig. 7.26, but at �

lab

= 37

o

.
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Figure 7.35: Same as in Fig. 7.27, but at �

lab

= 37

o

.
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Figure 7.36: Same as in Fig. 7.28, but at �

lab

= 37

o

.
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Figure 7.37: Same as in Fig. 7.25, but at �

lab

= 48

o

.
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Figure 7.38: Same as in Fig. 7.26, but at �

lab

= 48

o

.
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Figure 7.39: Same as in Fig. 7.27, but at �

lab

= 48
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Figure 7.40: Same as in Fig. 7.28, but at �
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= 48

o

.
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Now we go to higher energies than 200 MeV. There are experimental data at E

lab

= 346

MeV [19℄. Unfortunately there exists no full Faddeev alulation for this energy. Hene,

we an ompare only with data. In Figs. 7.41-7.44 we show the ross setion and the

spin observables in the pd break-up proess at E

lab

= 346 MeV and �

lab

= 22

o

. The

alulations agree only qualitatively with the data. In Fig. 7.41(a) the theoretial peak

of the ross setion for the NN potential Bonn-B is higher than the data, but on the

ontrary for the NN potential AV18 it is lower than the data. We reall the disussion for

E

lab

= 197 MeV that the multiple sattering lowers the ross setion. If this proess is not

neglibgible at E

lab

= 346 MeV that means that by inluding the resattering terms the

theoretial predition based on the NN potential Bonn-B may be improved but the one

based on the NN potential AV18 is getting worse. Now regardless the height of the peak,

the position of the theoretial peak is shifted to a higher neutron energy E

n

, ompared

to the data. This is atually already seen at E

lab

= 197 MeV and it annot be �xed

by inluding the resattering terms. Therefore, other proesses are responsible to shift

bak the ross setion peak along E

n

to the right position. These dynamial ingredients

together with the multiple sattering may also determine the height of the peak or the

whole parts of the ross setion. For A

y

in Fig. 7.42(a) the resattering terms seem to be

required to tilt the theoretial predition to be loser to the data, if we reall the similar

improvement of the theoretial predition at E

lab

= 197 MeV by inluding the resattering

terms. Thus, at this energy E

lab

= 346 MeV one an argue that the resattering terms

are still important to be inluded.

Lastly we go on to E

lab

' 500 MeV. We ompare with experimental data at E

lab

= 495

MeV [57℄. Again at this energy there is no full Faddeev alulation. In Figs. 7.45-7.48

we show the observables at E

lab

= 495 MeV and �

lab

= 18

o

. We see in Fig. 7.45(a)

that the alulations overestimate the ross setion at the peak and that the theoretial

peak is shifted to a higher neutron energy E

n

, ompared to the data. In Fig. 7.46(a) the

theoretial preditions for the analyzing power A

y

are somewhat below the experimental

data but not at E

n

lose to its maximum. Similar as in the ase at E

lab

= 346 MeV one

an onjeture that at E

lab

= 495 MeV the resattering terms are neessary to be taken

into aount.

7.3 E�ets of Relativity

We saw in the last setion that ompared to data the theoretial peaks of the ross setions

are shifted to higher neutron energies in omparisons with the data. The shifts are getting

larger as the energy E

lab

inreases and annot be �xed by inluding the resattering terms
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Figure 7.41: Same as in Fig. 7.25, but with no PW full Faddeev alulation, at E

lab

= 346

MeV, �

lab

= 22

o

. The experimental data are taken from Ref. [19℄.
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Figure 7.42: Same as in Fig. 7.41, but for (a) the analyzing power A

y

and (b) the neutron

polarization P
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Figure 7.43: Same as in Fig. 7.41, but for the polarization transfer oeÆients (a) D

ll

and

(b) D

ss

.
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Figure 7.44: Same as in Fig. 7.41, but for the polarization transfer oeÆients (a) D

sl

and (b) D

ls

.
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Figure 7.45: Same as in Fig. 7.41, but at E

lab

= 495 MeV and �

lab

= 18

o

. The experimental

data are taken from Ref. [57℄.
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Figure 7.46: Same as in Fig. 7.45, but for (a) the analyzing power A

y

and (b) the poal-

rization P
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Figure 7.47: Same as in Fig. 7.45, but for the polarization transfer oeÆients (a) D

ll

and

(b) D

ss

.
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Figure 7.48: Same as in Fig. 7.45, but for the polarization transfer oeÆients (a) D

sl

and (b) D

ls

.
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of the full Faddeev Nd break-up amplitude. Therefore, another proess (or proesses) must

also be taken into aount to bring the theoretial peak to the right position. The proess

should beome more important as the energy E

lab

inreases. Sine we are observing the pd

break-up proess at higher energies, we onsider to inlude relativity in our alulations.

The formulation derived in Chapter 6 for the ross setion is fully relativisti, but in

pratise there we were still fored to approximate the relativisti S-matrix. We restrited

ourselves just to relativisti kinematis. This inludes, however, not only the hanges of

the phase-spae fator but also the S-matrix elements. The latter is due to the relativisti

momenta, whih enter as arguments of the NN T-matrix and the deuteron wave funtion

omponents. We have to leave further steps for future investigations. These further steps

are boosting the NN T-matrix [58℄ and Wigner's rotation [59℄, whih are still under debate

in the literature.

Let us more losely look at the position of the ross setion peak. In the inlusive

Nd break-up proess without onsideration of the FSI the ross setion peak ours at a

point along the energy E

1

of the deteted nuleon, where after the break-up one of the two

undeteted nuleons is at rest. Thus, in the investigated pd break-up proess the ross

setion peak ours at a point along E

n

, where one of the two protons is at rest after the

break-up. Then in the �nal state two nuleons arry most of the energy of the proess.

The proess then happens as if one of the three nuleons ats just as a spetator, while

the other two ollide upon eah other. The proess is alled the quasi-free sattering

(QFS) and the ross seton peak under disussion the QFS-peak. The position of the

QFS-peak an be determined by means of the energy and the momentum onservations,

while setting the �nal momentum of one of the two undeteted nuleons to be zero. Using

nonrelativisti kinematis we obtain the QFS-peak position E

QFS

1

as

E

QFS

1

=

1

2

E

lab

os

2

�

lab

+

1

2

E

d

+

1

2

q

E

lab

os

2

�

lab

(E

lab

os

2

�

lab

+ 2E

d

); (7.5)

and using relativisti kinematis we obtain the QFS-peak position E

QFS;rel

1

as

E

QFS;rel

1

=

�B �

p

B

2

� 4AC

2A

; (7.6)

with

A = 4((2m+ E

lab

)E

lab

os

2

�

lab

� (2m + E

lab

+ E

d

)

2

) (7.7)

B = 4(2(2m+ E

lab

)mE

lab

os

2

�

lab

+ E

d

(2m+ E

lab

+ E

d

)(2m + 2E

lab

+ E

d

)) (7.8)

C = �E

2

d

(2m+ 2E

lab

+ E

d

)

2

: (7.9)

Note that in Eqs. (7.5), (7.7)-(7.9) E

lab

is the kineti energy of the projetile and not its
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total energy.

1

In Table 7.1 we show E

QFS

1

and E

QFS;rel

1

at some energies and sattering

angles, at whih data for the pd break-up proess exist and have been shown in the

previous setion. We see in the table that E

QFS;rel

1

is less than E

QFS

1

. Thus, relativity

brings the QFS-peak position to a lower energy of the deteted nuleon, ompared to the

one obtained from a nonrelativisti alulation. Later we shall ompare the QFS-peak

positions shown in Table 7.1 with data as we also hek other relativisti e�ets in the pd

break-up proess. In the table we see at E

lab

= 197 MeV that the di�erene between E

QFS

1

and E

QFS;rel

1

is getting larger as the sattering angle �

lab

inreases. It is also indiated in

the table that the di�erene between E

QFS

1

and E

QFS;rel

1

is getting larger as the projetile

energy E

lab

inreases, whih is something that one would expet from a relativisti e�et.

Table 7.1: The QFS-peak positions E

QFS

1

and E

QFS;rel

1

for the pd break-up proess at

some energies and sattering angles.

E

lab

[MeV℄ �

lab

E

QFS

1

[MeV℄ E

QFS;rel

1

[MeV℄

197 13

o

184.8 183.8

197 24

o

162.2 159.3

197 37

o

123.4 118.7

197 48

o

86.0 81.0

346 22

o

295.2 287.6

495 18

o

445.5 434.4

1

Here we sketh out how to arrive at Eqs. (7.5) and (7.6). To obtain E

QFS

1

in Eq. (7.5) we begin with

the energy and the momentum onservations for the Nd break-up proess, whih are given as:

E

lab

+E

d

= E

1

+E

2

+E

3

(7.10)

k

lab

= k

1

+ k

2

+ k

3

: (7.11)

Next we hoose in the �nal state that nuleon 3 is at rest, thus, k

3

is equal to zero. Under this ondition

Eqs. (7.10) and (7.11) lead to a quadrati equation in

p

E

1

given as

2E

1

+E

lab

� 2

p

E

1

E

lab

os �

lab

�E

lab

�E

d

= 0: (7.12)

The solution of Eq. (7.12) leads to E

QFS

1

as given in Eq. (7.5). Now to obtain E

QFS;rel

1

in Eq. (7.6) we

start with the same momentum onservation given in Eq. (7.11) and the relativisti energy onservation

for the Nd break-up proess, whih is given as

E

lab

+m

d

� 2m = E

1

+E

2

+E

3

: (7.13)

Next we set k

3

to be zero, and then Eqs. (7.11) and (7.13) lead to a quadrati equation, of whih one of

the solutions is E

QFS;rel

1

as given in Eq. (7.6).



188 7 Appliation to the Proton-Neutron Charge Exhange Reation

Now we ontinue to ompare between the alulations with and without the relativisti

orretion as well as experimental data for the pd break-up proess at various energies

and sattering angles. In Figs. 7.49-7.64 we show the omparisons at E

lab

= 197 MeV.

The nonrelativisti and the relativisti QFS-peaks in Figs. 7.49(a), 7.53(a), 7.57(a) and

7.61(a) our at E

QFS

1

and E

QFS;rel

1

, respetively, as given in Table 7.1. Enouragingly

the relativisti orretion brings the QFS-peaks at �

lab

= 24

o

in Fig. 7.53(a), at �

lab

= 37

o

in Fig. 7.57(a) and at �

lab

= 48

o

in Fig. 7.61(a) to the orret positions along the neutron

energy E

n

, where also the data our. But it also raises the heights of the peaks to be

higher than the data. At �

lab

= 13

o

in Fig. 7.49(a) the relativisti orretion shifts the

QFS-peaks in the same diretion as at other �

lab

's. The result is that now the peaks our

at lower E

n

, ompared to the data. To understand this let us return to Fig. 7.25(a),

whih shows the PW full Faddeev alulations for the ross setion at E

lab

= 197 MeV

and �

lab

= 13

o

. In Fig. 7.25(a) we see that the FSI is very important at this energy and

sattering angle as indiated by the very high peaks in the PW full Faddeev alulations at

the maximum of E

n

. In addition the FSI-peak ours very lose to the QFS-peak. Thus,

at E

lab

= 197 MeV, �

lab

= 13

o

the height and the position of the ross setion peak is also

determined strongly by the FSI. Sine we do not inlude the FSI, we obtain the results

as shown in Fig. 7.49(a) that the alulations predit the ross setion peaks ouring

at a shifted position to lower E

n

. For the spin observables the relativisti orretion

leads to various e�ets. In some ases the e�ets are getting larger as E

n

inreases

towards its maximum. This is seen, for example, for A

y

in Figs. 7.54(a) (�

lab

= 24

o

),

7.58(a) (�

lab

= 37

o

), 7.62(a) (�

lab

= 48

o

) and for D

ss

in Figs. 7.55(b) (�

lab

= 24

o

), 7.59(b)

(�

lab

= 37

o

), 7.63(b) (�

lab

= 48

o

). There at E

n

towards its maximum the relativisti

orretion lowers the theoretial preditions for A

y

and inreases the ones for D

ss

. In any

ase we an state that at E

lab

= 197 MeV the relativisti orretion is learly required to

orretly plae the ross setion peak along the neutron energy.

Similar omparisons are shown in Figs. 7.65-7.68 for E

lab

= 346 MeV, �

lab

= 22

o

and in Figs. 7.69-7.72 for E

lab

= 495 MeV, �

lab

= 18

o

. The nonrelativisti and the rel-

ativisti QFS-peaks in Figs. 7.65(a) and 7.69(a) our at E

QFS

1

and E

QFS;rel

1

as given

in Table 7.1. As at E

lab

= 197 MeV the relativisti orretion brings the QFS-peaks

in Figs. 7.65(a) and 7.69(a) to where the data our along E

n

. It also inreases the

heights of the peaks. We would like to point out that at E

lab

= 346 MeV the relativisti

QFS-peak in Fig. 7.65(a) is surprisingly shifted to the left, ompared to the data.

The origin of this little disrepany between the alulations and the data an be traed

bak to the experiment. In the experiment there is an unertainty of the energy, at whih

the pd break-up proess exatly ours. For example, due to the thikness of the target
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Figure 7.49: The 3D alulations for (a) the spin averaged di�erential ross setion and

(b) the polarization transfer oeÆient D

nn

in the pd break-up proess at E

lab

= 197 MeV

and �

lab

= 13

o

. The NN potentials used are Bonn-B and AV18. The word \rel" in the

urves' labels means that the orresponding alulations inlude relativisti kinemati.

The experimental data are taken from Ref. [18℄.
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Figure 7.50: Same as in Fig. 7.49, but for (a) the analyzing power A

y

and (b) the neutron

polarization P
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Figure 7.51: Same as in Fig. 7.49, but for the polarization transfer oeÆients (a) D

ll

and

(b) D

ss

.
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Figure 7.52: Same as in Fig. 7.49, but for the polarization transfer oeÆients (a) D

sl

and (b) D

ls

.
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Figure 7.53: Same as in Fig. 7.49, but at �

lab

= 24

o

.



194 7 Appliation to the Proton-Neutron Charge Exhange Reation

3D AV18

3D Bonn-B

3D rel AV18

3D rel Bonn-B

exp.

E

n

[MeV℄

A

y

180145110

0.24

0.07

-0.10

(a)

3D AV18

3D Bonn-B

3D rel AV18

3D rel Bonn-B

exp.

E

n

[MeV℄

P

0

180145110

0.35

0.20

0.05

(b)

Figure 7.54: Same as in Fig. 7.50, but at �

lab

= 24

o

.
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Figure 7.55: Same as in Fig. 7.51, but at �
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Figure 7.56: Same as in Fig. 7.52, but at �
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Figure 7.57: Same as in Fig. 7.49, but at �
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= 37
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.
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Figure 7.58: Same as in Fig. 7.50, but at �

lab

= 37
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.
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Figure 7.59: Same as in Fig. 7.51, but at �

lab

= 37
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.
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Figure 7.60: Same as in Fig. 7.52, but at �

lab

= 37
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.
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Figure 7.61: Same as in Fig. 7.49, but at �

lab

= 48

o

.
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Figure 7.62: Same as in Fig. 7.50, but at �

lab

= 48
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.
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Figure 7.63: Same as in Fig. 7.51, but at �

lab

= 48

o

.
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Figure 7.64: Same as in Fig. 7.52, but at �

lab
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.
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the proton may have lost some of its energy before it hits and breaks the deuteron apart

[54℄. In this ase the proess ours at some energy, whih deviates from the onsidered

one. At E

lab

= 346 and 495 MeV one sees more learly than at E

lab

= 197 MeV that

for the spin observables the relativisti e�ets beome larger as E

n

inreases and mostly

at E

n

towards its maximum. For A

y

at E

lab

= 346 MeV in Fig. 7.66(a) we see a similar

tilting e�et as the one seen in the last setion, when we investigated the resattering

proess. Clearly at higher energies relativity is getting more important. Therefore, the

relativisti orretion leads to more hanges as the energy inreases.

Now we tentatively disuss the relativisti orretion in onnetion with the

inlusion of the resattering terms of the full Faddeev Nd break-up amplitude. In the last

setion it was shown that the multiple sattering dereases the pd break-up ross setion,

whih is espeially visible around the peak. Compared to the data the theoretial peak

is, however, shifted to a higher neutron energy E

n

. Here in this setion we see that the

relativisti orretion shifts the theoretial peak bak to the orret position along E

n

,

but inreases its height. Therefore, one ould onjeture that inluding both,

the resattering terms and the relativisti orretion, will move the theoretial

predition for the ross setion peak towards the data. For the analyzing power A

y

the

multiple sattering improves the theoretial predition by the e�et like tilting A

y

. Thus,

it lifts A

y

at lower E

n

and drops A

y

at E

n

lose to its maximum. An almost similar e�et

is again aused by the relativisti orretion, whih an best be observed in Fig. 7.66(a).

Therefore, inluding the resattering terms and the relativisti orretion will very likely

improve the theoretial predition. Thus, for the higher energies we onsidered, say from

' 200 MeV to 500 MeV, we onjeture that both multiple sattering and relativity must

be taken into aount.

After the observations at higher energies we go to energies lower than E

lab

' 200

MeV and seek for relativisti e�ets. In Figs. 7.73-7.76 we show the ross setion and

the spin observables at E

lab

= 16 MeV, �

lab

= 13

o

and in Figs. 7.77-7.80 at E

lab

= 65

MeV, �

lab

= 13

o

. At E

lab

= 16 MeV we see for the ross setion in Fig. 7.73(a) only small

relativisti e�ets. The ross setions obtained from the relativisti alulations are larger

than the ones from the nonrelativisti alulations, that is about 1.4% at the peak around

E

n

= 6 MeV. For the spin observables relativisti e�ets are hardly seen at E

lab

= 16

MeV. At E

lab

= 65 MeV in Fig. 7.77(a) the ross setion peaks around E

n

= 58 MeV

arising from the relativisti alulations are already learly seen to be shifted to lower

E

n

, ompared to the ones from the nonrelativisti alulations. The heights of the ross

setion peaks from the relativisti alulations are about 6% higher than those from the

nonrelativisti alulations. At E

lab

= 65 MeV relativisti e�ets for the spin observables
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Figure 7.65: Same as in Fig. 7.49, but at E

lab

= 346 MeV and �

lab

= 22

o

. The experimental

data are taken from Ref. [19℄.
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Figure 7.66: Same as in Fig. 7.65, but for (a) the analyzing power A
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and (b) the neutron

polarization P
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Figure 7.67: Same as in Fig. 7.65, but for the polarization transfer oeÆients (a) D

ll

and

(b) D

ss

.
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Figure 7.68: Same as in Fig. 7.65, but for the polarization transfer oeÆients (a) D

sl

and (b) D

ls

.
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Figure 7.69: Same as in Fig. 7.65, but at E

lab

= 495 MeV and �

lab

= 18

o

. The experimental

data are taken from Ref. [57℄.
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Figure 7.70: Same as in Fig. 7.69, but for (a) the analyzing power A

y

and (b) the neutron

polarization P
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Figure 7.71: Same as in Fig. 7.69, but for the polarization transfer oeÆients (a) D

ll

and

(b) D

ss

.
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Figure 7.72: Same as in Fig. 7.69, but for the polarization transfer oeÆients (a) D

sl

and (b) D

ls

.
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an be seen, for example, in Fig. 7.78(a) for A

y

. The e�ets are about 4% around E

n

= 42

MeV. Therefore, at E

lab

= 65 MeV the relativity has already begun to be important.
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Figure 7.73: Same as in Fig. 7.69, but with no experimental data, at E

lab

= 16 MeV and

�

lab

= 13
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.
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Figure 7.74: Same as in Fig. 7.73, but for (a) the analyzing power A

y

and (b) the neutron

polarization P
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Figure 7.75: Same as in Fig. 7.73, but for the polarization transfer oeÆients (a) D

ll

and

(b) D

ss

.
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Figure 7.76: Same as in Fig. 7.73, but for the polarization transfer oeÆients (a) D

sl

and (b) D

ls

.
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Figure 7.77: Same as in Fig. 7.73, but at E

lab

= 65 MeV and �

lab

= 13

o

.
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Figure 7.78: Same as in Fig. 7.74, but at E

lab

= 65 MeV and �

lab

= 13

o

.
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Figure 7.79: Same as in Fig. 7.75, but at E

lab

= 65 MeV and �

lab

= 13

o

.
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Figure 7.80: Same as in Fig. 7.77, but at E

lab

= 65 MeV and �
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.



Chapter 8

SUMMARY AND OUTLOOK

We have developed a tehnique to perform few-nuleon alulations in momentum spae

without employing partial wave deompositions. We all this the 3D tehnique. We

began with the NN system and ontinued to 3N sattering, whih was the Nd break-up

proess in �rst order. The 3D tehnique has been intended to be a viable alternative to

the suesful PW tehnique. At higher energies the 3D tehnique should be better suited

than a PW based one. Here we summarize how we developed our 3D tehnique for the

NN system and the Nd break-up proess. The alulations in this work were arried out

based on the NN potentials AV18 [20℄ and Bonn-B [21℄. Finally we give an outlook for

further investigations as well as developments of the 3D tehnique.

NN Sattering

To develop the 3D tehnique it was neessary to start with NN sattering, sine the NN

T-matrix is input to alulations of more omplex few-nuleon systems. The �rst step

was to de�ne basis states for the NN system. We de�ned momentum-heliity basis states

being antisymmetri under exhange of the two nuleons in momentum, spin and isospin

spae. As reeted by the name the momentum-heliity basis states were onstruted

using momentum vetors states and heliity states of NN total spin. The NN total spin

was hosen instead of individual spins of the two nuleons to allow obtaining a smaller

number of LSE's to be solved. The symmetry properties of the T-matrix and the NN

potential matrix elements in the momentum-heliity basis states allow the redution of

the number of the LSE's for the NN T-matrix from 10 to 5 for eah NN total isospin state.

All LSE's in the 3D tehnique are integral equations in two variables, the magnitude of

the relative momentum between the two nuleons and the sattering angle.

The NN potential is expressed in a set of six independent operators, 
. We de�ned the

223
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 operators to be suitable for the momentum-heliity basis states and thus, allow for very

simple evaluations of the NN potential matrix elements. We derived a relation between

the set of the 
 operators and the set of six operators known as the Wolfenstein operators

[26℄. This is possible due to the invarianes, symmetry onditions and the hermitiity of

the NN potential [41℄. We want to point out that any NN potential given in operator form

an be used in the 3D tehnique. Representative potentials are the AV18 and Bonn-B

potentials, whih were used in this work.

In order to alulate observables and ompare them with NN data we onneted the

T-matrix elements in the momentum-heliity basis states to the ones in a physial repre-

sentation. The physial representation uses spins and isospins of the individual nuleons,

where the spins are quantized along an arbitrary but �xed z axis. Hene, the physial

representation is losely onneted to the experimental set up of NN sattering. We also

expanded the T-matrix elements in the momentum-heliity basis states into partial waves

and ompared the resulting NN phase shifts to the ones from standard PW alulations.

The agreement with the PW alulations for the NN phase shifts as well as for the NN

observables is perfet. The omparisons for NN observables showed that espeially for

higher energies many partial waves are needed in the PW alulations to onverge to

the 3D alulations. For example, at E

lab

= 300 MeV the PW alulation for the np

di�erential ross setion must take at least j

max

= 16 orresponding to 98 LSE's. We also

ompared our 3D alulations to observables based on the phase shifts determined in a

partial wave analysis (PWA) as well as diretly to NN data for laboratory energies higher

than 300 MeV. Later, when we alulated the Nd break-up proess at various energies,

we needed the NN T-matrix for those energies. Sine the 3D tehnique is appliable with

equal performane for any energy, the omparisons were intended to hek the imple-

mentations of the two NN potentials AV18 and Bonn-B in the 3D tehnique at higher

energies. Though these two parameterized NN potentials have been �tted to NN data

only for energies below 350 MeV, the omparisons with the PWA results and NN data

showed nevertheless rather good agreements.

The Deuteron

Conventionally the deuteron has always been alulated as a set of oupled equations for

orbital angular momenta l = 0 and l = 2. It was interesting to investigate, if we an

use the momentum-heliity basis states for a solution of the NN bound state. To ahieve

this we projeted the deuteron state and the eigenvalue equation onto this basis. Thus,

we de�ned the deuteron wave funtion omponents, whih are three-dimensional, in the
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momentum-heliity basis states. We also de�ned deuteron probability densities in the

momentum-heliity basis states. We derived the deuteron equations in the momentum-

heliity basis states as two oupled integral equations in two variables, the magnitude of

the relative momenta between the two nuleons and an angle referring to an arbitrary z

diretion. We related the deuteron wave funtion omponents in the momentum-heliity

basis states to the ones in the PW basis states. This onnetion allows to alulate the

PW projeted deuteron wave funtion omponents in s and d waves from the deuteron

wave funtion omponents in the momentum-heliity basis states. Comparisons with the

PW alulations for the deuteron s and d waves showed good agreements.

Next, using the momentum-heliity basis states, again we formulated the deuteron

equation and the deuteron wave funtion omponents in a di�erent way. At �rst we

kept the deuteron state being expanded in partial waves, and then derived an operator

form for the deuteron wave funtion in momentum spae. By means of the momentum-

heliity basis states the deuteron wave funtion in operator form led to the deuteron

wave funtion omponents in the momentum-heliity basis states, but now with analyti

angular behavior. This analyti angular behavior on�rmed the numerial one obtained in

the �rst formulation. This allowed us to derive the deuteron equation in one variable only,

namely the magnitude of the relative momentum between the two nuleons. We solved

this equation and obtained the same results as those in the �rst formulation. Again we

onneted to the standard PW deomposition and obtained good agreements for the PW

projeted deuteron wave funtion omponents in s and d waves. Finally by means of the

deuteron wave funtion in operator form we investigated in a 3D fashion the probability

densities for some spin on�gurations of the two nuleons inside the deuteron for an overall

polarized deuteron.

The Nd Break-Up Proess

Finally we stepped to a 3N system and extended the 3D tehnique for the Nd break-up

proess. We are interested in higher energies and deided to onsider only the leading order

term of the full Nd break-up amplitude. Thus, we wanted to see if the leading term alone

ould desribe the Nd break-up proess for the higher energies being onsidered, whih

were beyond ' 200 MeV nuleon laboratory energy. We used the Faddeev's sheme to

treat the Nd break-up proess. For simpliity we kept the deuteron state being expanded

in partial waves. This was a natural step, sine the deuteron wave funtion has only two

partial wave omponents, s and d waves. We started with deriving the leading term of the

full Nd break-up amplitude in the 3N basis states, whih were in a physial representation.
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As in the NN sattering ase the physial representation uses spins and isospins of the

individual nuleons, where the spins are quantized along an arbitrary but �xed z axis. The

kinematis of the three nuleons were desribed by two Jaobi momenta suh, that the

3N system was onsidered as onsisting of one nuleon and a 2N subsystem. Symmetry

properties under exhange of the three nuleons were introdued to the leading term

of the full Nd break-up amplitude by means of permutation operators. As a result we

obtained an expression for the leading term in terms of the NN T-matrix elements in

the physial representation. Using the previously derived physial representation of the

NN T-matrix elements it was straightforward to obtain the leading term of the full Nd

break-up amplitude in terms of the NN T-matrix elements in the momentum-heliity basis

states. In the resulting expression the initial 2N relative momenta as arguments of the

NN T-matrix elements in the momentum-heliity basis states were pointing in arbitrary

diretions. To solve the NN LSE's for the NN T-matrix we hoose a �xed, say z, diretion

as the diretions of the initial NN relative momenta. Therefore, as a �nal step we rotated

the NN T-matrix elements in the momentum-heliity basis states suh, that the initial

2N relative momenta were pointing into a �xed z diretion. The rotation then led to an

intriate additional phase fator.

With this leading term of the full Nd break-up amplitude in the momentum-heliity

basis states we alulated observables. Sine for higher energies one also has to expet

relativisti e�ets to be important, we took a further step, namely inluded relativisti

kinematis. Here we restrited ourselves to a very �rst and neessary step, namely to

replae the nonrelativisti Jaobi momenta and energy arguments of the nonrelativisti

leading term with the relativisti expressions. Finally we derived the ross setion using

the standard relativisti sattering theory. Thus, the leading term and the phase spae

fator of the ross setion hanged ompared to the one obtained using nonrelativisti

sattering theory.

We applied the formulation for the Nd break-up proess in a 3D approah to the (p,n)

harge exhange reation in the inlusive pd break-up proess. In this proess a proton is

direted towards a deuteron, whih then breaks up, and �nally the neutron is deteted,

while the two protons are not deteted. We alulated the spin averaged di�erential ross

setion (shortly alled ross setion) and some spin observables, whih were the neutron

polarization, the proton analyzing power and the polarization transfer oeÆients. We

disussed three di�erent aspets of our alulations. First, we ompared our alulations

to the PW alulations for proton laboratory energies E

lab

up to 197 MeV. It turned

out that up to E

lab

= 100 MeV our alulations still agreed with the PW alulations.

There was, however, already a disrepany of about 1.7% for the ross setion peak at
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100 MeV, where the PW alulations took 2N states of 2N total angular momenta j � 7

and 3N states of 3N total angular momenta J � 31=2. In fat, by taking so many

angular momentum states one has already reahed the present limits of PW alulations.

At E

lab

= 197 MeV our alulations disagreed with the PW alulations with j � 7 and

J � 31=2, sine the PW alulations did not suÆiently onverge. A onvergene test also

showed that the 2N total angular momentum states are more important than those of the

3N total angular momentum for the PW alulations to ahieve onvergene. For the same

number of total angular momentum states taken into aount disagreement between our

alulations and the PW alulations grows rapidly as the energy inreases. We onluded

that for E

lab

> 100 MeV PW alulations annot be used safely to aurately desribe

the Nd break-up proess.

Seondly, we wanted to show the importane of resattering e�ets. Thus, we om-

pared our alulations at E

lab

= 197 MeV to the PW full Faddeev alulations, whih

inluded not only the leading term but also the resattering terms of the full pd break-up

amplitude. The omparisons showed that at this energy resattering e�et do our and

mostly show up in the ross setion and the analyzing power. For these two observables

inlusions of resattering terms led to results loser to the data. We onluded that at

E

lab

= 197 MeV resattering terms of the full Nd break-up amplitude still have to be

onsidered.

For energies higher than 197 MeV we had no PW full Faddeev alulations to ompare

with. Therefore, we ompared diretly to the data at E

lab

= 346 and 495 MeV. For

these energies we ould only onjeture that resattering terms may be neessary, sine

disrepanies to the data were visible.

At last, we studied the e�et of relativisti kinematis in our alulations. For this

purpose we ompared our 3D alulations with and without relativisti kinematis to

eah other for energies of 197, 346 and 495 MeV, at whih we also had the experimental

data. At these energies we observed relativisti e�ets mostly in the ross setions and the

analyzing powers. For these two observables relativisti kinematis led to better results in

relation to the data. The e�ets grew larger with inreasing energy, as one might expet.

In omparisons to the data the observed relativisti e�ets together with the previously

seen resattering e�ets led to a onjeture that to better desribe the pd break-up proess

at higher energies, say ' 200 MeV to 500 MeV, one needs to inlude both, the resattering

terms and the relativisti orretions. In order to �nd out at whih energy relativisti

e�ets appear already to be important we ompared our alulations with and without

relativisti ingredients to eah other at 16 and 65 MeV. We found that at E

lab

= 65 MeV

relativisti e�ets started to be visible.
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Finally we would like to summarize our work within one paragraph. We have developed

a 3D tehnique for NN sattering, the deuteron and the Nd break-up proess. The 3D

tehnique has proven to be a good alternative to the PW deomposition and appears to

be neessary at higher energies. In ontrast to the PW deomposition the 3D tehnique

requires muh less algebrai work. For lower energies, where the PW alulations are still

reliable, the 3D alulations show perfet agreements with the PW alulations.

Outlook

It is lear that after �nishing this work, there are still many investigations left on few-

nuleon systems to pursue using the 3D tehnique. For the NN system it is interesting

to implement in the 3D tehnique new NN potentials suh as the ones [60℄ based on the

hiral perturbation theory. For few-nuleon bound systems with nuleon numbers greater

than 2 the 3D tehnique should neessarily be employed, sine unlike for the deuteron

the triton [61, 62, 63℄, the �-partile [64, 65℄ and other more omplex few-nuleon bound

systems involve very many angular momentum states. For 3N sattering we have not yet

solved the full Faddeev equation, whih has been shown to be important. We also have

not yet inluded three nuleon fores (3NF's), whih may play a more predominant role

at higher energies. In appreiating relativity we only onsidered relativisti kinematis.

We have not taken into aount the boost of the NN T-matrix [58℄ and the Wigner

rotations [59℄. These will be interesting and hallenging investigations to arry out in the

future. Espeially in inorporating dynamial features of relativity a 3D formulation will

be rewarding. From our point of view the next step will be to inlude the resattering

terms of the full Nd break-up amplitude and 3NF's. This will enter a domain at higher

energies, whih up to know has not yet been investigated thoroughly.
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Appendix A

THE ROTATION MATRIX

In this appendix we give derivations of the two relations for d

j

m

0

m

whih we used in the

main text. See Ref. [31, 32℄ for a more detailed desription of d

j

m

0

m

.
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It is obvious from this de�nition that d
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is real.
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Using the de�nition given in Eq. (A.1) this relation an be derived as
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Similarly we an also have the following relation
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whih is obtained if we insert u = j+m�n instead of u = j�m

0

�n in the third equality

of Eq. (A.3):
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This an be derived using Eqs. (A.2) and (A.4) as
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THE 
 OPERATORS

The general struture of a NN potential has the following form
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This was derived by means of Mathematia. Obviously the matrix elements A
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are salar
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alulate the determinant of the matrix A and get
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In the transformation matrix A given in Eq. (B.4) there are terms of 
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We show in the following that these terms do not ause singularities.
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therefore the numerator in Eq. (B.7) vanishes.
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For  = 1 the numerator of this term vanishes as an be shown here
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Appendix C

THE BONN

ONE-BOSON-EXCHANGE

POTENTIAL

The pseudosalar, salar and vetor part of the Bonn one-boson-exhange potential (OBEP)

takes the following form:
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where m denotes the nuleon mass, m
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(� = ps; s; v) the meson's mass, E =
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with �

�

being the uto�. In the propagator one has
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The

^

O

�

operators (� = ps; s; vv; vt; tt) take a form of a ombination of �
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and �
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. These
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operators have to be expressed in terms of the 
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operators

given in Eq. (3.30), aomplished in the following. First, the
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operators are written in

terms of the W

i

operators given in Eq. (3.29). An easy way to do this is that one rewrites
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Next using the transformation given in Eq. (3.31) and disussed in detail in Appendix B

the expression for the
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+W

0

Wq

02

q

2



2

1

2m

2

(


2

� 2


1

): (C.16)

This task an also be done with help of symboli manipulation pakages, suh as mathe-

matia.

One sees that the azimuthal behavior of the matrix elements V

�St

�

0

�

(q

0

;q) of the

potentials in Eqs. (C.1)-(C.3) in the momentum-heliity basis is just the one desribed

in Eq. (3.52). As shown in Chapter 3 this behavior leads to simpli�ation in solving the

LSE.
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Appendix D

THE ARGONNE AV18

POTENTIAL

The OPE part V

�

(q

0

;q) and intermediate- and short-range part V

R

(q

0

;q) of the Argonne

AV18 potential are given as

V

�

(q

0

;q) = V

�

ss

(q

0

;q) + V

�

t

(q

0

;q) (D.1)

V

R

(q

0

;q) = V



St

(q

0

;q) + V

t

St

(q

0

;q) + V

ls

St

(q

0

;q) + V

l2

St

(q

0

;q) + V

ls2

St

(q

0

;q); (D.2)

where

V

�

ss

(q

0

;q) =

1

2�

2

^

O

ss

Z

1

0

dr r

2

j

0

(�r)V

�

ss

(r) (D.3)

V

�

t

(q

0

;q) =

1

2�

2

^

O

t

Z

1

0

dr r

2

j

2

(�r)V

�

t

(r) (D.4)

V



St

(q

0

;q) =

1

2�

2

^

O

ss

Z

1

0

dr r

2

j

0

(�r)V



St

(r) (D.5)

V

t

St

(q

0

;q) =

1

2�

2

^

O

t

Z

1

0

dr r

2

j

2

(�r)V

t

St

(r) (D.6)

V
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(q

0

;q) =

1

2�

2

^

O

ls

Z

1

0

dr r

3

j

1

(�r)V

ls

St

(r) (D.7)

V
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;q) =

1
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2
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O
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Z

1
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dr r

3

j

1
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2�
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4
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V
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1
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2
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O

(1)
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Z
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0
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3
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O

(2)
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Z

1

0

dr r

4

j

2

(�r)V

ls2

St

(r); (D.9)

where � � jq

0

�qj. As shown in Eqs. (4.11)-(4.17) the

^

O

�

operators (� = ss; t; ls; l2; ls2)

are ombinations of projeted-spin operators along some axes, for example � �
^
q. These

^

O

�

operators have to be expressed in the 


i

operators. In similar way to that for the

Bonn OBEP, �rst we rewrite the

^

O

�

operators in terms of the W

i

operators. We obtain
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^

O
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(D.10)
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with

(q

0

� q)

2

= q

02

+ q

2

� 2q

0

q (D.17)

 =
^
q

�

^
q = os �

0

os �

0

+ sin �

0

sin �

0

os(�

0

� �): (D.18)

Next by means of the transformation given in Eq. (3.31) and disussed in detail in

Appendix B we get the expressions for the

^

O

�

operators in terms of the 


i

operators as
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Conerning azimuthal behavior one an hek that the matrix elements V

�St

�

0

�

(q

0

;q) of

the potential given in Eqs. (D.3)-(D.9) in the momentum-heliity basis have azimuthal

behavior as desribed by Eq. (3.52).
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Appendix E

NUMERICAL REALIZATION FOR

NN SCATTERING

In this appendix we desribe the evaluation of integrals, the way we treat the prinipal

value singularity and solve the LSE's given in Eq. (3.73). We make also a note on the

numerial method in performing the Fourier-Bessel transformations given in Eqs. (4.11)-

(4.17).

E.1 Integration

In solving the LSE's in Eq. (3.73) altogether we have integrals in three variables q

00

, �

00

and �

00

. However, the integral in the variable �

00

, whih is given in Eq. (3.70), an be

evaluated independently. Therefore, the LSE's to be solved are two-dimensional (2D)

integral equations in the variables q

00

and �

00

. We evaluate these integrals by means of a

numerial integration (known also as quadrature) method. In our ase Gauss-Legendre

quadrature [66℄ is most suitable. For larity of desription all integrals in this subsetion

will be written as

I =

Z

b

a

dxf(x):

The integration points and weights of the Gauss-Legendre quadrature are de�ned for

an integration within an interval [�1; 1℄. Therefore, these points and weights must be

mapped onto the interval [a; b℄ of the evaluated integral, as desribed in the following

equation

I =

Z

b

a

dxf(x) =

Z

1

�1

dyf(y)

=

X

i

w

i

f(x

i

) =

X

i

v

i

f(y

i

); (E.1)
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where the y

i

's and v

i

's are points and weights of the Gauss-Legendre quadrature, and the

x

i

's and w

i

's must be the orresponding points and weights for the evaluated integral,

respetively. For the �

00

- and �

00

-integrations we use a linear mapping given as

x

i

=

b� a

2

y

i

+

b+ a

2

w

i

=

1

2

(b� a)v

i

: (E.2)

For the q

00

-integration, whih is within the interval [0;1℄, we use two di�erent mapping

shemes for the Bonn-B and the AV18 potentials presented in the next paragraphs. The

Gauss-Legendre quadrature points are more dense at both ends than in the middle of the

interval. This is of speial advantage for the �

00

-integrations, sine the T-matrix behaves

more peaked around forward and bakward diretions.

For the q

00

-integration in ase of the Bonn-B potential the y

i

's and v

i

's are mapped

onto the interval [0;1℄ in steps desribed as follows:

I =

Z

1

0

dxf(x) =

Z

1

0

dzf(z) =

Z

1

�1

dyf(y)

=

X

i

w

i

f(x

i

) =

X

i

u

i

f(z

i

) =

X

i

v

i

f(y

i

); (E.3)

where the z

i

's and u

i

's are points and weights of the integral with the interval [0; 1℄. In

the rightmost equalities a linear mapping is applied. Next the z

i

's and u

i

's are mapped

onto the interval [0;1℄ by employing the following mapping

x

i

= k tan

�

�

2

z

i

�

w

i

= k

�

2

u

i

os

2

�

�

2

z

i

�

: (E.4)

With this mapping the integration points are distributed suh that the density dereases

as the momentum inreases, sine the T-matrix is getting smoother and falls o� at higher

momenta. This behavior of the integration point density is ontrolled by the onstant k.

Smaller k inreases the density of points at lower momenta. The typial value of k is 1000

MeV/ or 5.068 fm

�1

, depending on the units used.

For the AV18 potential the q

00

-integration is terminated at a ertain point q

3

. This

termination is unavoidable sine the potential is obtained by performing a numerial

Fourier-Bessel transformation of the AV18 potential in on�guration spae, whih is

diÆult to realize for very high momenta. We found out that the integral interval an

be safely ut o� at q

3

= 150 fm

�1

. The interval [0; q

3

℄ is splitted into two intervals [0; q

2

℄

and [q

2

; q

3

℄ representing lower and higher momentum regions, respetively. In the higher

momenta interval [q

2

; q

3

℄ we use a linear mapping as given in Eq. (E.2), with a; b being

replaed by q

2

; q

3

. In the lower momenta interval [0; q

2

℄ a hyperboli mapping given in

the following is employed:

x

i

=

1 + y

i

1

q

1

�

�

1

q

1

�

2

q

2

�

y

i

w

i
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�

2

q

1

�

2

q

2
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i

n

1

q

1

�

�

1

q

1

�

2

q

2

�

y

i

o

2

: (E.5)
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Here q

1

is the momentum, where the interval [0; q

2

℄ is splitted into two intervals [0; q

1

℄

and [q

1

; q

2

℄ of equal number of points. The typial values for q

1

and q

2

are 3 fm

�1

and 10

fm

�1

, respetively.

For performing the above mentioned numerial Fourier-Bessel transformation to obtain

the AV18 potential in momentum spae we employ Filon's quadrature method [67℄. This

method is proven to be aurate for integrations of strong osillatory funtions suh as

the ones in Eqs. (4.11)- (4.17) for large values of �. And ompared to another powerful

method, for example the Simpson's rule, it needs less integration points. For small � and

� = 0 we use the Gauss-Legendre quadrature with linear mapping.

Now we would like to give the number of integration points for all the q

00

-, �

00

- and

�

00

-integrations we have. To obtain these numbers we hek for some lower partial waves

up to j = 4 the onvergene of phase shifts. The numbers of integration points mentioned

in the following are suÆient to ahieve a onvergene within four digits after the deimal

point. This means the large phase shifts onverge within 6 signi�ant �gures and the

small ones 4 signi�ant �gures.

The original �

00

-integration within an interval [0; 2�℄ is rewritten within an interval

[0;

�

2

℄ as shown in the following notation:

I =

Z

2�

0

d�

00

f(os(�

0

� �

00

))e

im(�

0

��

00

)

=

Z

2�

0

d�

00

f(os�

00

)e

im�

00

=

Z

�

0

d�
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n

f(os�

00

)e

im�

00

+ f(� os�

00

)e

im(�

00

+�)

o

=

Z
�

2

0

d�

00

n

f(os�

00

)

�

e

im�

00

+ e

im(2���

00

)

�

+ f(� os�

00

)

�

e

im(�

00

+�)

+ e

im(���

00

)

�o

: (E.6)

The seond equality is justi�ed by the periodiity of the integrand within 2�. In this

way the number of integration points an be redued. For both potentials Bonn-B and

AV18 ten integrations points are suÆient. In ase of the �

00

-integration it turns out that

for the Bonn-B potential one needs at least 32 integration points, whereas for the AV18

potential one an take 24 integration points. The q

00

-integration for the Bonn-B potential

requires 72 integration points in the S = 0 ase and 48 points in the S = 1 ase. For the

AV18 potential both in the S = 0 and S = 1 ases 50 integration points are required for

the lower momenta interval [0; q

2

℄ and 22 points for the higher momenta interval [q

2

; q

3

℄.

Clearly one needs more integration points at lower momenta, where the T-matrix is not

smooth.
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E.2 Prinipal Value Singularity

The free propagator G

+

0

(E

q

) given in Eq. (2.12) for an outgoing wave an be written as

G

+

0

(E

q

) = lim

�!0

1

E

q

+ i�� E

q

00

=

P

E

q

� E

q

00

� i�Æ(E

q

� E

q

00

); (E.7)

where P in the �rst term in the last equality stands for the prinipal value part. This

term is singular at E

q

00

= E

q

. In the q

00

-integration of Eq. (3.73) this singularity ours at

q

00

= q. We treat the singularity problem by employing a redution method [68℄ desribed

in the following.

Consider the following prinipal value integral

I =

Z

1

0

dx

Px

2

f(x)

a

2

� x

2

; (E.8)

where the integrand is singular at x = a. This integral an be rewritten as

I =

Z

1

0

dx

Px

2

f(x)

a

2

� x

2

�

Z

1

0

dx

a

2

f(a)

a

2

� x

2

; (E.9)

sine the seond term equals zero. Next we treat the singularity by evaluating the integral

as

I =

Z

1

0

dx

x

2

f(x)� a

2

f(a)

a

2

� x

2

: (E.10)

Thus, the numerator vanishes at x = a and the integrand is well de�ned at x = a. In ase

of the AV18 potential, where we do not integrate to 1, the integral is evaluated as

I =

Z

M

0

dx

x

2

f(x)� a

2

f(a)

a

2

� x

2

�

1

2

af(a) ln

�

M � a

M + a

�

; (E.11)

where the seond term results from

�

Z

1

M

dx

a

2

f(a)

a

2

� x

2

:

E.3 Solving the Lippmann-Shwinger Equation for

the T-Matrix

In this subsetion we desribe how the LSE's given in Eq. (3.73) are solved to obtain

the T-matrix elements T

�St

�

0

�

(q

0

;q). For S = 0 the LSE is an unoupled equation and for

S = 1 we have for eah initial heliity � = 1; 0 two oupled equations for �nal heliities

�

0

= 1; 0. In favor of simpliity we express the LSE in the following notation:

T

q

0

�

0

�

0

= V

q
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�

0

�

0

+ lim

�!0

X

�

00

Z

�

0

d�

00

Z

M

0

dq
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mF
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+ i�� q
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; (E.12)
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suppressing all the parameters: spin S, isospin t and parity �

�

as well as the initial

variables: heliity � and the momentum's magnitude q, exept the one in the propagator.

We hoose the interval for the q

00

-integration as [0;M ℄ instead of [0;1℄ to make it more

general, sine for the AV18 potential the integration is terminated at M = q

3

.

We write Eq. (E.12) in terms of a prinipal value part and a delta funtion and then

treat the prinipal value singularity by the method given in the previous subsetion:
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Numerially this equation is evaluated as
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where w

�

00

and w

q

00

are the weights for the �

00

- and q

00

-integrations, respetively, and

�

Æ

q

00

q

� (1� Æ

q

00

q

). Let us now simplify the notations, de�ne � for the ombination q

0

�

0

�

0

,
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� for q

00

�

00

�

00

and

P

�

for
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. Next resolving Eq. (E.14) with respet to V
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with

A

��

� Æ

��

�

"

�

Æ

q

00

q

w

q

00

q

00

q

2

� q

00

2

� Æ

q

00

q

8

<

:

X

q

000

6=q

w

q

000

q

q

2

� q

000

2

+

1

2

ln

 

M � q

M + q

!

+

1

2

i�

9

=

;

3

5

w

�

00

q

00

mF

��

: (E.16)

Equation (E.15) is a matrix representation of a system of linear equation, with the size

of the symmetri matrix A being (n

q

00

� n

�

00

)

2

, where n

q

00

and n

�

00

are the numbers of q

00

-

and �

00

-integration points. A system of linear equations an be solved using methods like

the Gaussian elimination and the LU deomposition, whih is better than the former one

[66℄. Some ready-to-use routines olleted as a library suh as Lapak and NAG libraries

are also available at omputing enters, whih proved to be powerful. The Lapak routines

an also be downloaded from the site http://www.netlib.org/. In our alulations we use

one of the Lapak routines alled ZGESV.



Appendix F

TWO SUCCESSIVE ROTATIONS

In Chapter 6 we faed two suessive rotations, applied to the momentum-heliity states.

Here we evaluate two suessive rotations in momentum spae and in spin spae. But we

�rstly give a few basi de�nitions and relations required in this appendix. See Refs.[32, 31℄

for more details.

A rotation of a system (a state) is performed by means of a rotation operator R(
^
p)

de�ned as

R(
^
p) = R(��0) = e

�iJ

z

�

e

�iJ

y

�

; (F.1)

where J

z

; J

y

are the z- and y-omponents of the angular momentum operator J and (�; �)

the rotation angles and the diretion of p as well. The rotation operator R(
^
p) works on

the angular momentum state j
^
zjmi as

R(
^
p)j

^
zjmi = j

^
pjmi: (F.2)

Here j
^
pjmi is the rotated angular momentum state (shorted as the rotated state), given

as

j
^
pjmi = R(

^
p)j

^
zjmi

=

X

j

0

m

0

j
^
zj

0

m

0

ih
^
zj

0

m

0

jR(
^
p)j

^
zjmi

�

X

m

0

D

j

m

0

m

(
^
p)j

^
zjm

0

i; (F.3)

where

D

j

m

0

m

(
^
p) = D

j

m

0

m

(��0) = h
^
zjm

0

jR(
^
p)j

^
zjmi; (F.4)

whih we all the Wigner D-funtion. We see that R(
^
p) onserves j. In the following

text we use R

L

(
^
p) and R

S

(
^
p) for rotations in momentum spae and in spin spae, with

J being replaed by L and S, respetively. Thus,

R

L

(
^
p) = R

L

(��0) = e

�iL

z

�

e

�iL

y

�

R

S

(
^
p) = R

S

(��0) = e

�iS

z

�

e

�iS

y

�

: (F.5)
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A rotation R(��) of a state j
^
zjmi orresponds to a hange of the Cartesian oor-

dinates r desribing the state through a rotation matrix M(��). The new Cartesian

oordinates r

0

are related to the old ones r as

r

0

= M(��)r: (F.6)

The rotation matrix M(��) is given as

M(��)r � M

z

00

()M

y

0

(�)M

z

(�)r; (F.7)

with

M
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(F.8)

M

z

00

() =

0

B

B

B

�

os  sin  0

� sin  os  0

0 0 1

1

C

C

C

A

:

Here M

z

(�) represents a rotation of the oordinate system O through an angle � around

the z-axis, M

y

0

(�) a rotation of the rotated oordinate system O

0

through an angle �

around the rotated y'-axis, M

z

00

() a rotation of the rotated oordinate system O

00

through

an angle  around the rotated z"-axis. Thus, the rotation matrix M(��) represents

three suessive rotations, whih bring the old oordinate system O to the new one O

000

.

It follows that

M(��)

=
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B

B

�

os� os � os  � sin� sin  sin� os � os  + os� sin  � sin� os 

� os� os � sin  � sin� os  � sin� os � sin  + os� os  sin� sin 

os� sin� sin� sin� os �

1

C

C

C

A

:

(F.9)

F.1 Two Suessive Rotations in Momentum Spae

Let us onsider a momentum state jpi with
^
p pointing in (�; �) diretion, expanded in

partial waves as

jpi =

X

lm

jplmiY

�

lm

(�; �); (F.10)
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where jplmi is de�ned to be quantized along the z-axis. Now take a speial diretion

^
p =

^
z. The momentum state jp

^
zi is given as

jp
^
zi =

X

lm

jplmiY

�

lm

(0; 0) =

X

l

jpl0i

s

2l + 1

4�

: (F.11)

Applying to the state jp
^
zi a rotation operator R

L

(
^
p) given in Eq. (F.5) leads to
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where we have used the relation between the spherial harmonis and the Wigner

D-funtions given as

Y

�

lm

(�; �) =

s

2l + 1

4�

D

l

m0

(��0): (F.13)

Thus, R

L

(
^
p) rotates the state jp

^
zi to beome the state jpi.

Next we apply to the state jpi an inverse rotation operator R

�1
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) = R
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where we have de�ned the
^
p diretion as to be onneted to the

^
p

00

diretion aording to

j
^
p

00

i = R

y

L

(
^
p

0

)j
^
pi: (F.15)

Hene, the spherial harmonis Y

l

0

m

0

(�

00

; �

00

) an be obtained as a representation in
^
p of

the angular momentum state j
^
p

0

l

0

m

0

i with the quantization axis in the
^
p

0

diretion. Using

Eq. (F.14) we obtain
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In obtaining Eq. (F.19) one an also use the following equation [31℄
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Inserting Eq. (F.12) into Eq. (F.19) leads to
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Hene, we obtain that the two suessive rotations R

y

L

(
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(
^
p) applied to the state jp

^
zi

an be replaed by the rotation R
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). Consequently any number of suessive rotations

in momentum spae an always be replaed by one rotation with the right rotation angles.
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Equations (F.21) and (F.22) are obtained from the rotation matries of the Cartesian

oordinates, whih orrespond to the rotations in Eq. (F.20). Suh a rotation matrix

M(��) orresponding to R(��) is given in Eq. (F.9).

whih is obtained by applying the formal expression for a rotation of an angular momentum state given

in Eq. (F.2) to the spherial harmonis, whih are eigenstates of the orbital angular momentum operator

L. The angles (�
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F.2 Two Suessive Rotations in Spin Spae

One may think that analogously the rotation identity given in Eq. (F.20) also applies

in spin spae. But this must be heked, sine analogies do not always lead to orret

onlusions. Therefore, we evaluate two suessive rotations in spin spae, independent of

the evaluation in momentum spae in the previous setion. We use the rotation operator

R

S

(
^
p) given in Eq. (F.5). Thus, we ompare the rotated spin state or the heliity state
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with the rotated spin state j
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Note that here the relation between (�
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; �

00

), (�

0

; �

0

) and (�; �) given in Eqs. (F.21) and

(F.22) is still valid, sine this relation results from the transformation of the Cartesian

oordinates, whih is the same in both momentum spae and spin spae.
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Similarly it an be shown that the state j
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is also eigenstate of the heliity operator
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Moreover a salar produt of two states is rotationally invariant. Thus,
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Therefore, it remains to �nd out whether the two heliity states j
^
p

00

S�i

1

and j
^
p

00

S�i

2

are

just the same or are distinguished from eah other by merely a phase fator.
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The heliity states j
^
p

00

S�i

1

and j
^
p

00

S�i

2

are expanded in the spin states j
^
zS�i as

j
^
p

00

S�i

1

= R

S

(
^
p

00

)j
^
zS�i

=

X

�

0

j
^
zS�

0

ih
^
zS�

0

jR

S

(�

00

�

00

0)j
^
zS�i

=

X

�

0

j
^
zS�

0

iD

S

�

0

�

(�

00

�

00

0) (F.28)

j
^
p

00

S�i

2

= R

y

S

(
^
p

0

)R

S

(
^
p)j

^
zS�i

=

X

N

R

y

S

(�

0

�

0

0)j
^
zSNih

^
zSN jR

S

(��0)j
^
zS�i

=

X

�

0

N

j
^
zS�

0

ih
^
zS�

0

jR

y

S

(�

0

�

0

0)j
^
zSNiD

S

N�

(��0)

=

X

�

0

j
^
zS�

0

i

X

N

D

S�

N�

0

(�

0

�

0

0)D

S

N�

(��0)

�

X

�

0

j
^
zS�

0

iX

S

�

0

�

(�

00

�

00

0); (F.29)
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Therefore, instead of omparing j
^
p

00

S�i

1

with j
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The Wigner D-funtions obey a symmetry relation given as

D

j�

m

0

m

(��) = (�)

m

0

�m

D

j

�m

0

;�m

(��): (F.32)

Therefore, for S = 1 the ase with initial heliity � = �1 an be left out and we onsider

only six ases with �

0

= 1; 0;�1 and � = 1; 0.

The Wigner D-funtion D

1

�

0

�

(��0) is given as

D

1

(��0) =

0

B

B

B

�

e

�i�

1+os �

2

�e

�i�

sin �

p

2

e

�i�

1�os �

2

sin �

p

2

os � �

sin �

p

2

e

i�

1�os �

2

e

i�

sin �

p

2

e

i�

1+os �

2

1

C

C

C

A

: (F.33)

For � = 0 it follows
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0) (F.34)
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Thus,

X
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�
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For � = 1 we obtain
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Hene, for � = 1 apparently we have
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The di�erene between Eq. (F.37) and Eq. (F.41) is at the value of �. And from Eq. (F.27)

we know that

jX

1
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�

(�

00

�

00

0)j

2

= jD

1

�

0

�

(�

00
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; (F.42)
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whih we also have heked using Eqs. (F.33) and (F.38)-(F.40). Therefore, we an be

sure that X

1

�

0

�

(�

00

�

00

0) is related to D

1

�

0

�

(�

00

�

00

0) by a phase fator. The phase fator must

depend on � and the set of angles (�; �; �

0

; �

0

), and is independent of �

0

. The latter an

be understood as we see in Eqs. (F.23) and (F.24) that there is no �

0

. We hoose the

phase fator suh that
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where 
 depends on the set of angles (�; �; �

0

; �

0

) and is given through its tangential as
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The 
 alulated in Eq. (F.44) is also valid for other ombinations of �

0

and �, sine 


is independent of �

0

and �. Equation (F.43) agrees with Eqs. (F.37), (F.41) and (F.42)

as well as Eq. (F.31) for S = 0. A further hek shows that
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whih is onsistent with Eq. (F.43) as
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After all these evaluations we summarize that
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We have restored the spin notation S, sine Eqs. (F.48) and (F.49) are general and hene

apply to arbitrary spin S, inluding S = 0.



Appendix G

NUMERICAL REALIZATION

FOR THE PROTON-NEUTRON

CHARGE EXCHANGE

REACTION

In this appendix we desribe how to numerially alulate the Nd break-up amplitude

U

0

(p;q). As a reminder, the amplitude onsists of three parts U

(1)

0

(p;q), U

(2)

0

(p;q) and

U

(3)

0

(p;q) as

U

0

(p;q) = U
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0

(p;q) + U

(2)

0

(p;q) + U

(3)

0

(p;q): (G.1)

These three parts are related to eah other through permutations of the nuleons. The

�rst part U
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(p;q) is given as
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with

 

l

(�

0

) = the deuteron partial wave projeted wave funtion

T

�St

��

0

(p; �; os �

0

;E

p

) = the NN T-matrix elements
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� =

1

2

q+ q

0

(G.3)
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The other parts U

(2)

0

(p;q) and U

(3)

0

(p;q) are obtained from Eqs. (G.2)-(G.6) by applying

the following replaements

for U
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G.1 Momentum Addition

There are several additions of momenta in the formulation, see for example Eqs. (G.3),

(G.4), (G.7) and (G.8). Thus, one has to �nd out the resulting momenta from these

additions by alulating their omponents. Sine we are working with a spherial oor-

dinate systems these omponents are the magnitude, the angles � to the z-axis and the

azimuthal angle �. It is straightforward to obtain these omponents of the momenta as

shown in the following.

Consider a momentum addition

C = A+B: (G.9)

The magnitude of C is given as
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): (G.11)

The omponents of C, whih are projeted on the axes of a Cartesian oordinate system,

are given as
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Thus, one an �nd the angle �
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The azimuthal angle �

C

is determined uniquely by its sine and osine together, whih are

given as
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(G.13)

G.2 Integration

We onsider the Nd break-up proess, where in the �nal state only one nuleon is deteted.

Therefore, to alulate the observables in the proess we sum over all possible diretions

of the other two nuleons. This is realized by integrating over the diretion of the Jaobi

momentum p of the undeteted 2N subsystem, as shown in Eq. (6.24).

The
^
p-integration is two-fold, denoted as

I =

Z

�

0

d�

p

Z

2�

0

d�

p

f(�

p

; �

p

): (G.14)

To alulate this integral we use the Gauss-Legendre quadrature and a linear map-

ping as mentioned in Setion E.1. We vary the numbers of integration points to test

the onvergene of our integration, these are n

�

p

for the �

p

-integration and n

�

p

for the

�

p

-integration. We found that with n

�

p

= 48 and n

�

p

= 18 the integration onverges.

G.3 Interpolation

To alulate U

0

(p;q) one needs the NN T-matrix elements. Let us for example take

T

�St

��

0

(p; �; os �

0

;E

p

), whih are needed to alulate U

(1)

0

(p;q) given in Eq. (G.2). The NN

T-matrix elements T

�St

��

0

(p; �; os �

0

;E

p

) are ideally obtained diretly from the LSE's given

in Eq. (3.73). Thus, one �rst solves the LSE's at various energies E

p

and initial momenta

� of the two nuleon subsystem. Then for eah pair of E

p

and � one knows the NN

T-matrix elements on ertain grids in �nal momenta p

0

and os �

00

. Among the p

0

-values

is also the required on-shell value p. Next one uses the same LSE's again to alulate the

NN T-matrix elements at the required angle os �

0

. This would be the ideal proedure

and the same also to obtain the orresponding NN T-matrix elements for U

(2)

0

(p;q) and
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U

(3)

0

(p;q). But it is not pratial sine very time onsuming. Therefore, we think of a

more eonomi way and hoose to interpolate the NN T-matrix elements from the ones

exatly obtained from the LSE's, whih are prepared before the alulations. Though the

NN T-matrix elements are determined by four arguments, for example p; �; os �

0

and E

p

in

Eq. (G.2), the interpolation is three-dimensional, sine p and E

p

are related. In Eq. (6.48)

the relation between p and E

p

for the nonrelativisti ase is given and in Eq. (6.127) for

the relativisti ase. Thus, we interpolate along os �

0

; � and E

p

for U

(1)

0

(p;q) in Eq. (G.2)

and along the orresponding quantities for U

(2)

0

(p;q) and U

(3)

0

(p;q).

We use the same interpolation method as the one used in Chapter 4 for the AV18

potential, that is the modi�ed ubi hermite splines [44℄. This is a one-dimensional inter-

polation method, but an also be used for a multi-dimensional interpolation, desribed as

follows: Using this method a one-dimensional interpolation is performed as
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where f(x
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) are the interpolated values at x
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of the

funtion f . The spline oeÆients S
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are determined beforehand by

the sets fxg and fyg. Now, as an example of a multi-dimensional interpolation, a 3D

interpolation is performed as
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Thus, in fat one performs three one-dimensional interpolations as shown in the following.
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We prepare a 3D grid of the NN T-matrix elements, obtained from the LSE's given

in Eq. (3.73). We found that the ranges of the grid axes in U

(1)

0

(p;q), U

(2)

0

(p;q) and

U

(3)

0

(p;q) are the same, as shown in the next setion. Therefore, it is suÆient to show

here only the ranges of os �

0

; � and E

p

. The range of os �

0

is set to be from -1 to 1:

�1 � os �

0

� 1: (G.18)

The ranges of E

p

and � depend on the projetile's kineti energy E

lab

. For reasons of

eÆieny we prepare a grid suh that it an be used for any value of E

lab

within a ertain
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range, whih we are interested in. The highest E

lab

we are interested in is 500 MeV, where

there are experimental data to ompare with, and we hoose the lowest E

lab

to be 5 MeV.

Thus, for

5 MeV � E

lab

� 500 MeV (G.19)

we obtain the ranges of E

p

and � as

2:5 � 10

�4

MeV � E

p

� 335 MeV (G.20)

30:66 MeV � � � 982 MeV: (G.21)

See the next setion for the onnetion between E

lab

and E

p

, �, and the determination of

these ranges.

The os �

0

-points within the range given in Eq. (G.18) are determined simply as the

Gauss-Legendre quadrature points. We found that 80 points are suÆient for the inter-

polation to reah a ertain auray given in the next paragraph. As the NN T-matrix

elements hange smoothly with the energy and are getting smoother as the energy raises

we distribute the E

p

-points within the range given in Eq. (G.20) exponentially as follows:

Sine in a lower energy region the NN T-matrix elements hange stronger than in a higher

one we devide the range in two regions as

E

min

� E

(1)

p

� E

mid

E

mid

� E

(2)

p

� E

max

; (G.22)

where E

min

= 2:5 � 10

�4

MeV, E

max

= 335 MeV and E

mid

some energy between E

min

and

E

max

. Next E

(1)

p

and E

(2)

p

are alulated as

E

(1)

p;i

= e

x

(1)

i

E

(2)

p;i

= e

x

(2)

i

; (G.23)

with

x

(1)

i

=

i�1

n

1

�1

A

(1)

+B

(1)

; A

(1)

= ln

E

mid

E

min

; B

(1)

= lnE

min

; (i = 1; :::; n

1

)

(G.24)

x

(2)

i

=

i

n

2

A

(2)

+B

(2)

; A

(2)

= ln

E

max

E

mid

; B

(2)

= lnE

mid

; (i = 1; :::; n

2

)

: (G.25)

Here n

1

is the number of E

p

-points in region 1 and n

2

in region 2. In this way the natural

logarithm of the E

(i)

p

-point (i = 1; 2) varies linearly in A

(i)

and hene the E

(i)

p

-point varies

exponentially in A

(i)

. We use n

1

= 16 and n

2

= 24, with E

mid

being �xed to 0:5 MeV.

This value turned out to be our of suitable hoies to keep the strong variations of the

NN T-matrix at small energies and its interpolation under ontrol. Thus, we put a higher

density of points in the lower energy region. For the interpolation along � we determine the

�-points within the range given in Eq. (G.21) by means of the Gauss-Legendre quadrature

points and a tangential mapping given in Setion E.1, with the parameter k being equal
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to 5.068 fm

�1

and the number n

�

of �-points to 120. From the resulting list of �-points we

disard �-points below 30.66 MeV and beyond 979.79 MeV, and then replae the speial

�-point 979.79 MeV with 982 MeV. There are left 50 points of � from 30.66 MeV to 982

MeV.

We test our 3D-interpolation by omparing with 600 data of the NN T-matrix

elements, whih are alulated exatly using the LSE's given in Eq. (3.73). Thus, we

alulate the relative di�erenes between the interpolated and the exat data. The 600

data are alulated for 30 di�erent sattering angles from 0 to �, 10 NN .m. kineti

energies from 3 � 10

�4

MeV to 330 MeV and 2 magnitudes of the initial momenta. The

latter are hosen to be lose to the orresponding on-shell nonrelativisti momenta of the

hosen 10 energies. With the interpolation parameters given in the previous paragraph

we obtain that for the singlet spin states all the relative di�erenes are below 1% for

the two NN potentials we use; these are the Bonn-B and the AV18. For the triplet spin

states there are 60 ases for the NN potential Bonn-B and 34 for the AV18, where the

relative di�erenes are larger than 2%. All other relative di�erenes are less than 2%.

The 60 ases for the Bonn-B and 34 for the AV18 our in two ases, i.e. near the points,

where (1) the data hange sign while their urves are rossing the zero line and (2) the NN

T-matrix elements vary very sharply, for example, at the forward and bakward diretions.

The test, hene, shows that the interpolation grid is aeptable.

Similar to the ase of the NN T-matrix elements, it is also not pratial to alulate the

deuteron partial wave projeted wave funtion  

l

(�

0

) exatly at the value of �

0

. Therefore,

we interpolate  

l

(�

0

) from the exat ones, obtained from the deuteron equation. We

prepare a grid of  

l

(�

0

) along �

0

. The �

0

-range depends on E

lab

and is the same as the

ranges of the orresponding quantities for U

(2)

0

(p;q) and U

(3)

0

(p;q) as shown in the next

setion. For E

lab

from 5 MeV to 500 MeV it is required to have the �

0

-range as

0:05 MeV � �

0

� 982 MeV: (G.26)

We determine the �

0

-points within this range using the Gauss-Legendre quadrature points

and a hyperboli-linear mapping given in Setion E.1. Reall that this is the way by whih

we solved the deuteron wave funtion in Chapter 5. Here we use the parameters for the

mapping as q

1

= 0:1 fm

�1

, q

2

= 1:5 fm

�1

, q

3

= 5 fm

�1

, 24 �

0

-points between 0 and q

2

,

and 24 �

0

-points between q

2

and q

3

. We replae the �rst point 5:099 � 10

�2

MeV with

5 � 10

�2

MeV and the last point 984:98 MeV with 982 MeV. We test the interpolation by

omparing with a more dense distribution of the deuteron partial wave projeted wave

funtion within the range given in Eq. (G.26), that is with 126 data. The test shows very

small relative di�erenes, whih are below 0.1%. There are very few ases (less than 10
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ases), where the relative di�erenes are greater than 0.1% but below 2.5%. But these

our near the points, where the funtion hanges sign while rossing the zero line. Thus,

the test gives a good result.

G.4 Momenta and Energy Ranges for the Inter-

polation

To prepare the grid for the interpolations mentioned in the previous setion one needs

to know the lower and upper limits of the grid axes. For the grid axis os �

0

and the

orresponding axes in U

(2)

0

(p;q) and U

(3)

0

(p;q) the lower and upper limits are best set to

be -1 and 1, thus all possible values of the osines are overed. For the grid axes E

p

, �

and �

0

and the orresponding axes in U

(2)

0

(p;q) and U

(3)

0

(p;q) the lower and upper limits

have to be found. We alulate these limits �rstly for alulations of U

0

(p;q) without

relativisti kinematis. After that we test if the limits an also be used to alulate

U

0

(p;q) with relativisti kinematis. This is neessary, sine energies and momenta in

these two formulations have di�erent ranges of values. Finally, we take a grid, whih an

be used for both alulations with and without relativisti kinematis.

Let us de�ne the new notations E

(i)

NN

; Q

(i)

�

; Q

(i)

�

0

, where i = 1; 2; 3 refers to U

(1)

0

(p;q),

U

(2)

0

(p;q) and U

(3)

0

(p;q), suh that

E

(1)

NN

= E

p

Q

(1)

�

= � Q

(1)

�

0

= �

0

: (G.27)

Thus,

for U

(1)

0

(p;q) :

8

>

>

>

<

>

>

>

:

E

(1)

NN

= E

d

+

3

4m

(q

2

0

� q

2

)

Q

(1)

�

=

�

�

�

1

2

q+ q

0

�

�

�

Q

(1)

�

0

=

�

�

��q�

1

2

q

0

�

�

�

(G.28)

for U

(2)

0

(p;q) :

8

>

>

>

>

<

>

>

>

>

:

E

(2)

NN

= E

d

+

3

4m

�

q

2

0

�

�

p�

1

2

q

�

2

�

Q

(2)

�

=

�

�

�

1

2

�

p�

1

2

q

�

+ q

0

�

�

�

Q

(2)

�

0

=

�

�

��

�

p�

1

2

q

�

�

1

2

q

0

�

�

�

(G.29)

for U

(3)

0

(p;q) :

8

>

>

>

>

<

>

>

>

>

:

E

(3)

NN

= E

d

+

3

4m

�

q

2

0

�

�

p+

1

2

q

�

2

�

Q

(3)

�

=

�

�

��

1

2

�

p +

1

2

q

�

+ q

0

�

�

�

Q

(3)

�

0

=

�

�

�p +

1

2

q�

1

2

q

0

�

�

�

; (G.30)

where the magnitude q

0

of the relative momentum of the projetile to the deuteron is

given as

q

0

=

2

3

k

lab

=

s

8

9

mE

lab

: (G.31)
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To alulate the lower and upper limits of E

(i)

NN

; Q

(i)

�

; Q

(i)

�

0

we need to know the ranges of

q as well as of

�

�

�p�

1

2

q

�

�

�. The q-range is known from the relation between q and p given in

Eq. (6.10) to be

0 � q �

s

q

2

0

+

4

3

mE

d

� q

max

: (G.32)

Thus, q is maximum if p is minimum and vie versa. The lower and upper limits of

�

�

�p�

1

2

q

�

�

� are given as

�

�

�

�

p�

1

2

q

�

�

�

�

min

=

�

�

�

�

p�

1

2

q

�

�

�

�

min

= 0 (G.33)

�

�

�

�

p�

1

2

q

�

�

�

�

max

=

�

p+

1

2

q

�

max

= q

max

: (G.34)

Equation (G.33) ours at q =

q

3

4

q

2

0

+mE

d

due to Eq. (6.10) and Eq. (G.34) is obtained

using Eq. (6.10) in the following way:

y = p+

1

2

q =

s

3

4

(q

2

0

� q

2

) +mE

d

+

1

2

q

dy

dq

�

�

�

�

�

y

max

=

�3q + 2

q

3

4

(q

2

0

� q

2

) +mE

d

4

q

3

4

(q

2

0

� q

2

) +mE

d

�

�

�

�

�

�

y

max

= 0

=) qj

y

max

=

1

2

s

q

2

0

+

4

3

mE

d

=

1

2

q

max

y

max

=

s

q

2

0

+

4

3

mE

d

= q

max

:

In summarizing we have the ranges of q and

�

�

�p�

1

2

q

�

�

� as

0 �

�

q;

�

�

�

�

p�

1

2

q

�

�

�

�

�

�

s

q

2

0

+

4

3

mE

d

: (G.35)

Equation (G.35) together with Eqs. (G.28)-(G.30) tell us that the lower and upper limits

of E

(i)

NN

; Q

(i)

�

, Q

(i)

�

0

are the same for all i = 1; 2; 3. Let us take E

(1)

NN

; Q

(1)

�

; Q

(1)

�

0

given in

Eq. (G.28), sine they have the simplest form, and then drop the supersript (1). The

lower and upper limits of E

NN

; Q

�

; Q

�

0

are obtained to be

E

NN;min

= E

d

+

3

4m

�

q

2

0

� q

2

max

�

= 0 (G.36)

E

NN;max

= E

d

+

3

4m

�

q

2

0

� q

2

min

�

= E

d

+

3

4m

q

2

0

(G.37)

Q

�;min

= �

1

2

q

max

+ q

0

= �

1

2

s

q

2

0

+

4

3

mE

d

+ q

0

(G.38)

Q

�;max

=

1

2

q

max

+ q

0

=

1

2

s

q

2

0

+

4

3

mE

d

+ q

0

(G.39)
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Q

�

0

;min

= �qj

q=

1

2

q

0

+

1

2

q

0

= 0 (G.40)

Q

�

0

;max

= q

max

+

1

2

q

0

=

s

q

2

0

+

4

3

mE

d

+

1

2

q

0

: (G.41)

To simplify we an neglet the deuteron binding energy E

d

in Eqs. (G.36)-(G.41).

Negleting E

d

does neither raise the minima nor lower the maxima of E

NN

; Q

�

; Q

�

0

. In

fat it lowers the minima and raises the maxima of E

NN

; Q

�

; Q

�

0

. Therefore, it is justi�ed

to neglet E

d

even for lower projetile's laboratory kineti energy E

lab

, and thus lower q

0

,

sine the interpolation grid an still be safely used. We obtain after negleting E

d

the

ranges of E

NN

; Q

�

; Q

�

0

to be

0 � E

NN

�

3

4m

q

2

0

(G.42)

1

2

q

0

� Q

�

�

3

2

q

0

(G.43)

0 � Q

�

0

�

3

2

q

0

: (G.44)

Now we hek if the ranges of E

NN

; Q

�

; Q

�

0

given in Eqs. (G.42)-(G.44) an also be

used to alulate U

0

(p;q) with relativisti kinematis. Finally we take a grid, whih an

be used to alulate U

0

(p;q) with and without relativisti kinematis. It is suÆient to

hek only the maximum of E

NN

, de�ned as E

NN;max

, and q

0

, for whih we de�ne the

orresponding relativisti quantities as E

(r)

NN;max

and q

(r)

0

. If E

NN;max

in Eq. (G.42) is larger

than or equal to the orresponding E

(r)

NN;max

, then the E

NN

-range given in Eq. (G.42) an

be used to alulate U

0

(p;q) with and without relativisti kinematis. If q

0

given in

Eq. (G.31) is less than or equal to the orresponding q

(r)

0

we use q

(r)

0

to alulate the

maxima of Q

�

and Q

�

0

, and q

0

to alulate the minimum of Q

�

. Here we keep E

lab

as denoting the laboratory kineti energy of the projetile, in ontrast to what we did

in Setion 6.3, where we rede�ned E

lab

as denoting the laboratory total energy of the

projetile.

Referring to Eq. (6.127) the relativisti kineti energy E

(r)

NN

in the 23-subsystem is

given as

E

(r)

NN

= 2

q

m

2

+ p

2

� 2m = M

23

� 2m; (G.45)

where M

23

is the invariant mass of the 23-subsystem. As an be heked in Eq. (6.104)

M

23

is onneted to the invariant mass M

0

of the 3N system as

M

0

=

q

m

2

+ q

(r)2

+

q

M

2

23

+ q

(r)2

=

q

9m

2

+ 4mE

lab

; (G.46)

where the rightmost equality is taken from the de�nition of M

0

given in Eq. (6.96) by

negleting E

d

. The maximal value of M

23

is M

0

�m, where q

(r)

= 0. Therefore, we obtain

E

(r)

NN;max

= M

0

� 3m
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=

q

9m

2

+ 4mE

lab

� 3m: (G.47)

Now we assume that E

(r)

NN;max

is less than E

NN;max

given in Eq. (G.42), with q

0

being

given in Eq. (G.31). We hek this assumption as follows:

E

(r)

NN;max

< E

NN;max

q

9m

2

+ 4mE

lab

� 3m <

2

3

E

lab

q

9m

2

+ 4mE

lab

<

2

3

E

lab

+ 3m

9m

2

+ 4mE

lab

<

4

9

E

2

lab

+ 9m

2

+ 4mE

lab

0 <

4

9

E

2

lab

: (G.48)

The assumption that E

(r)

NN;max

< E

NN;max

is orret. Hene, the E

NN

-range given in

Eq. (G.42) an also be used to alulate U

0

(p;q) with relativisti kinematis.

From Eq. (6.110) the relativisti initial Jaobi momentum q

(r)

0

is obtained by negleting

E

d

as

q

(r)

0

=

2m

M

0

k

lab

=

2m

p

9m

2

+ 4mE

lab

q

E

2

lab

+ 2mE

lab

=

s

4m(E

lab

+ 2m)

9m + 4E

lab

E

lab

: (G.49)

Now we assume that q

(r)

0

is larger than q

0

given in Eq. (G.31). We hek if the assumption

is orret as follows:

q

(r)

0

> q

0

s

4m(E

lab

+ 2m)

9m+ 4E

lab

E

lab

>

s

8

9

mE

lab

(E

lab

+ 2m)

9m+ 4E

lab

>

2

9

9(E

lab

+ 2m) > 2(9m+ 4E

lab

)

E

lab

> 0: (G.50)

It is true that q

(r)

0

> q

0

. Hene, the ranges of Q

�

and Q

�

0

to be used for alulations of

U

0

(p;q) with and without relativisti kinematis are given as

1

2

q

0

� Q

�

�

3

2

q

(r)

0

(G.51)

0 � Q

�

0

�

3

2

q

(r)

0

: (G.52)
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The ranges of E

NN

given in Eq. (G.42) and of Q

�

; Q

�

0

given in Eqs. (G.51)-(G.52)

are energy-dependent. They enlarge as E

lab

inreases. In addition the Q

�

-range is also

shifted as its minimum inreases with E

lab

. Now, for pratial purposes we want to have

an interpolation grid, whih an be used for more than just one E

lab

. Thus, we determined

a ertain range for E

lab

we are interested in and then set the minimum of Q

�

to orrespond

to the lowest E

lab

, de�ned as E

lab;min

, and the maxima of E

NN

; Q

�

; Q

�

0

to the highest E

lab

,

de�ned as E

lab;max

. Finally we obtain the ranges of E

NN

; Q

�

; Q

�

0

as

0 � E

NN

�

2

3

E

lab;max

(G.53)

s

2

9

mE

lab;min

� Q

�

�

3

2

v

u

u

t

4m(E

lab;max

+ 2m)

9m+ 4E

lab;max

E

lab;max

(G.54)

0 � Q

�

0

�

3

2

v

u

u

t

4m(E

lab;max

+ 2m)

9m+ 4E

lab;max

E

lab;max

: (G.55)

Equations (G.53)-(G.55) must be taken as giving the narrowest and yet safe ranges of

E

NN

; Q

�

and Q

�

0

for the interpolations. Deviations are of ourse allowed as long as not

lowering the range-maxima and / or raising the range-minima. But the zero-minima as

in Eqs. (G.53) and (G.55) are exeptional. The NN T-matrix elements are known to

drop drastially as the initial or the �nal momenta move away from the on-shell ones,

orresponding to the NN kineti energy. The NN kineti energy orresponding to the

minimum of Q

�

in Eq. (G.54) is not zero unless E

lab;min

is equal to zero. Thus, one an

replae the zero-minimum of E

NN

in Eq. (G.53) with a small number, muh less than

the NN kineti energy, whih orresponds to the minimum of Q

�

. The zero-minimum of

Q

�

0

in Eq. (G.55) an also be safely replaed by a small number, sine near Q

�

0

= 0 the

deuteron S-wave is almost at and the D-wave is approahing zero. Moreover, numerial

test shows that the minimum of Q

�

0

is never really zero. We are interested to alulate the

Nd break-up amplitude for E

lab

up to 500 MeV, where data exist. Thus, we set E

lab;max

to be 500 Mev and hoose 5 MeV as E

lab;min

. The ranges of E

NN

; Q

�

; Q

�

0

for this range

of E

lab

is

2:5 � 10

�4

MeV � E

NN

� 335 MeV (G.56)

30:66 MeV � Q

�

� 982 MeV (G.57)

0:05 MeV � Q

�

0

� 982 MeV: (G.58)
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