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ZUSAMMENFASSUNG UND
AUSBLICK

Wir haben ein Verfahren zur Berechnung von Wenignukleonsystemen im Impulsraum
entwickelt, ohne eine Partialwellenzerlegung (PW Zerlegung) anzuwenden. Wir nennen
dies das dreidimensionale (3D) Verfahren. Wir begannen mit dem Nukleon-Nukleon (NN)
System und fuhren mit dem Dreinukleonstreuprozefl (3N StreuprozeB) fort. Dies war
speziell der Nd Aufbruchsprozef} in erster Ordnung in der NN T-Matrix. Das 3D Verfahren
war als eine vielversprechende Alternative zu der erfolgreichen PW Zerlegung beabsichtigt,
da es sich bei hoheren Energien besser als ein auf Partialwellen basierendes Verfahren
eignen sollte. Hier fassen wir zusammen, sowohl wie wir das 3D Verfahren fiir das NN
System und den Nd Aufbruchsprozel entwickelten als auch die Durchfithrung und die
Ergebnisse des 3D Verfahrens. Die Berechnungen in dieser Arbeit wurden basierend auf
den NN Potentialen AV18 [20] und Bonn-B [21] durchgefiihrt. Schlieflich geben wir einen

Ausblick auf weitere Untersuchungen und auch Entwicklungen des 3D Verfahrens.

NN Streuprozef}

Um das 3D Verfahren zu entwickeln, war es notwendig, mit dem NN Streuprozel zu
beginnen, weil die NN T-Matrix der Input zur Berechnungen von komplexeren Wenignu-
kleonsystemen ist. Der erste Schritt war es, 3D Basiszustande des NN Systems zu
definieren. Wir definierten Impuls-Helizitat-Basiszustande, welche antisymmetrisch unter
Austausch zwischen den beiden Nukleonen im Impuls-, Spin- und Isospinraum sind. Wie
der Name sagt, wurden die Impuls-Helizitat-Basiszustande aus Impulsvektorzustanden
und Helizitatszustanden zum gesamten NN Spin konstruiert. Es wurden nicht die in-
dividuellen Spins der beiden Nukleonen sondern der NN Gesamtspin genommen. Dies
ermoglichte es, eine kleinere Zahl von zu l6senden Lippmann-Schwinger-Gleichungen
(LSG’en) zu erhalten.  Die Symmetrieeigenschaften der T-Matrix- und der NN

Potentialmatrixelemente in den Impuls-Helizitat-Basiszustanden lassen die Reduzierung
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der Zahl der LSG’en fiir die NN T-Matrix von 10 auf 5 fiir jeden NN Gesamtisospinzustand
zu. Alle diese LSG’en im 3D Verfahren sind Integralgleichungen in zwei Variablen. Diese

sind der Betrag des Relativimpulses zwischen den beiden Nukleonen und der Streuwinkel.

Das NN Potential wird durch eine Gruppe von sechs unabhangigen Operatoren, €2,
ausgedriickt. Wir definierten die {2 Operatoren geeignet fiir die Impuls-Helizitat-Basis-
zustande, sodafl eine sehr einfache Ausarbeitung der NN Potentialmatrixelemente
ermoglicht wird. Wir leiteten eine Relation zwischen der Gruppe der €2 Operatoren und
der Gruppe der sechs Operatoren, die als die Wolfenstein Operatoren [26] bekannt sind,
ab. Diese Gruppe von Operatoren wird iiber Invarianzen, eine Symmetriebedingung und
die Hermitizitdt des NN Potentials [41] eingeschrinkt. Wir m&chten darauf hinweisen,
daf} ein beliebiges in Operatorform gegebenes NN Potential im 3D Verfahren angewandt
werden kann. Repréisentative Potentiale sind die AV18 und Bonn-B Wechselwirkungen,

die in dieser Arbeit angewandt wurden.

Um Observablen zu berechnen und sie mit NN Daten zu vergleichen, verkniipften
wir die T-Matrixelemente in den Impuls-Helizitat-Basiszustanden mit denen in einer
physikalischen Darstellung. Die physikalische Darstellung beniitzt die Spins und Isospins
der individuellen Nukleonen, wobei die Spins beziiglich einer beliebigen aber festen
z-Achse quantiziert sind.  Deshalb ist die physikalische Darstellung eng mit den
experimentellen Spineinstellungen eines NN Streuprozefles verbunden. Wir entwickelten
auch die T-Matrixelemente in den Impuls-Helizitat-Basiszustanden in Partialwellen und
verglichen die NN Streuphasen aus den 3D Berechnungen mit den normalen PW
Berechnungen. Die ﬂbereinstimmungen mit den PW Berechnungen sowohl fiir NN
Streuphasen als auch fiir NN Observablen sind perfekt. Die Vergleiche in den NN
Observablen zeigten, daf3 viele Partialwellen besonders bei den hoheren Energien in den
PW Berechnungen gebraucht werden, um Konvergenz der PW Berechnungen in bezug auf
die 3D Berechnungen zu erhalten. Zum Beispiel, bei E;,;, = 300 MeV mufl man in der PW
Berechnung fiir den np differentiellen Wirkungsquerschnitt mindestens j,,,., = 16 nehmen,
welches 98 LSG’en entspricht. Wir verglichen auch unsere 3D Berechnungen sowohl mit
Observablen, die auf den Streuphasen basieren, welche in einer Partialwellenanalyse
(PWA) bestimmen wurden, als auch direkt mit NN Daten bei Laborenergien, die hoher als
300 MeV waren. Spater, wenn wir den Nd Aufbruchsprozefi bei verschiedenen
Energien berechneten, brauchten wir die NN T-Matrix auch fiir solche hohere Energien.
Da das 3D Verfahren fiir alle Energien in gleicher Weise anzuwenden ist, waren die
Vergleiche beabsichtigt, um die Anwendungen der zwei NN Potentiale AV18
und Bonn-B im 3D Verfahren bei hoheren Energien zu testen. Obwohl diese zwei

parametrisierten NN Potentiale nur an NN Daten bei Energien, die niedriger als 350
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MeV sind, angepafit wurden, zeigten die Vergleiche mit den Ergebnissen der PWA und

NN Daten trotzdem recht gute Ubereinstimmungen.

Das Deuteron

Konventionell wird das Deuteron immer iiber gekoppelte Gleichungen fiir die Drehim-
pulse [ = 0 und [ = 2 berechnet. Es war interessant, zu untersuchen, ob wir die
Impuls-Helizitat-Basiszustande fiir eine Losung des NN Bindungszustandes benutzen
konnen. Fir diesen Zweck projizierten wir den Deuteronzustand und die Eigenwert-
gleichung auf die Impuls-Helizitat-Basiszustande. Somit definierten wir Deuteronwellen-
funktionskomponenten, die dreidimensional in den Impuls-Helizitat-Basiszustanden sind.
Wir definierten auch Deuteronwahrscheinlichkeitsdichten in den Impuls-Helizitat-Basis-
zustanden. Die abgeleiteten Deuterongleichungen in den Impuls-Helizitat-Basiszustanden
resultierten als zwei gekoppelte Integralgleichungen in zwei Variablen, dem Betrag des
Relativimpulses zwischen den beiden Nukleonen und einem Winkel, der sich auf eine be-
liebige z-Richtung bezieht. Wir verkniipften die Deuteronwellenfunktionskomponenten in
den Impuls-Helizitat-Basiszustanden mit denen der PW Basiszustande. Diese Verbindung
ermoglicht es, die auf Partialwellen projizierten Deuteronwellenfunktionskomponenten in
S- und D-Wellen aus den Deuteronwellenfunktionskomponenten in den Impuls-Helizitét-
Basiszustanden zu berechnen. Die Vergleiche mit den PW Berechnungen in den S- und
D-Wellen des Deuterons zeigten gute Ubereinstimmungen.

Als néchstes formulierten wir wieder die Deuterongleichung und die Deuteronwellen-
funktionskomponenten durch die Impuls-Helizitdt-Basiszustinde auf eine andere Weise.
Zunachst belielen wir den Deuteronzustand in Partialwellen, und leiteten dann eine
Operatorform der Deuteronwellenfunktion im Impulsraum ab. Vermoge der Impuls-
Helizitat-Basiszustdnde fiihrte die Deuteronwellenfunktion in Operatorform zu den
Deuteronwellenfunktionskomponenten in den Impuls-Helizitat-Basiszustidnden, welche
jetzt aber analytisches Winkelverhalten hatten. Dieses analytische Winkelverhalten
bestatigte das numerisch gefundene in der ersten Formulierung. Das analytische Winkel-
verhalten lieff es nun zu, die Deuterongleichung in nur einer Variablen, namlich dem
Betrag des Relativimpulses zwischen den beiden Nukleonen, abzuleiten. Wir 16sten diese
Gleichung und erhielten die gleichen Ergebnisse wie die bei der ersten Formulierung. Auch
hier stellten wir eine Verbindung mit der normalen PW Zerlegung her und bekamen gute
Ubereinstimmungen in den auf Partialwellen projizierten Deuteronwellenfunktionskompo-
nenten in S- und D-Wellen. Zuletzt untersuchten wir in dreidimensionaler Weise iiber die

Deuteronwellenfunktion in Operatorform die Wahrscheinlichkeitsdichte mehrerer
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Spinkonfigurationen der zwei Nukleonen im Deuteron fiir ein insgesamt polarisiertes

Deuteron.

Der Nd Aufbruchsprozef

Schliefilich kamen wir bei dem 3N System an und wir erweiterten das 3D Verfahren auf
den Nd Aufbruchsproze. Wir interessieren uns fiir hohere Energien und entschieden uns,
nur den fiihrenden Term der vollen Nd Aufbruchsamplitude zu nehmen. Somit wollten
wir sehen, ob der fithrende Term allein den Nd Aufbruchsproze3 bei den betrachteten
hoheren Energien iiber ~ 200 MeV Laborenergie des Nukleons ausreichend beschreiben
konnte. Wir wandten das Faddeev Schema an, um den Nd Aufbruchsprozefl zu behandeln.
Der Einfachkeit halber belielen wir den Deuteronzustand in Partialwellen. Das war ein
natiirlicher Schritt, da die Deuteronwellenfunktion nur zwei Partialwellenkomponenten
in S- und D-Wellen hat. Wir begannen damit, den fiihrenden Term der vollen Nd Auf-
bruchsamplitude in den 3N Basiszustianden, welche in einer physikalischen
Darstellung waren, auszuarbeiten.  Wie beim NN Streuprozefl geht man in der
physikalischen Darstellung von Spins und Isospins der individuellen Nukleonen aus, die
entlang einer beliebigen aber festen z-Achse quantiziert sind. Die Kinematik der drei
Nukleonen wurde von zwei Jacobi Impulsen so beschrieben, dafl das 3N System als ein
System betrachtet wurde, das aus einem Nukleon und einem 2N Subsystem besteht.
Symmetrieeigenschaften unter Austausch der drei Nukleonen wurden durch Permutation-
operatoren im fithrenden Term der vollen Nd Aufbruchsamplitude eingefiihrt. Als Folge
bekamen wir einen Ausdruck des fiihrenden Termes in den NN T-Matrixelementen in der
physikalischen Darstellung. Durch die vorher abgeleitete physikalische Darstellung der NN
T-Matrixelemente war es einfach, den fithrenden Term der vollen Nd Aufbruchsamplitude
in den NN T-Matrixelementen in den Impuls-Helizitat-Basiszustanden zu erhalten. In
dem resultierenden Ausdruck zeigten die 2N Anfangsrelativimpulse als Argumente der
NN T-Matrixelemente in den Impuls-Helizitat-Basiszustanden in beliebige Richtungen.
Um die NN LSG’en fiir die NN T-Matrix zu losen, wahlen wir notwendigerweise eine
feste z-Richtung als die Richtung der NN Anfangsrelativimpulse. Deshalb drehten wir als
einen letzten Schritt die NN T-Matrixelemente in den Impuls-Helizitat-Basiszustdnden,
die sich im fiihrenden Term der vollen Nd Aufbruchsamplitude befinden, sodaf} die 2N
Anfangsrelativimpulse in eine feste z-Richtung zeigten. Diese Drehung fiihrte zu einem
komplizierten zusétzlichen Phasenfaktor.

Mittel dieses fithrenden Termes der vollen Nd Aufbruchsamplitude in den Impuls-

Helizitat-Basiszustanden berechneten wir Observablen. Da man bei hoheren Energien mit



X

relativistischen Effekten rechnen muf3te, nahmen wir einen weiteren Schritt vor, namlich
relativistische Kinematik in der Formulierung miteinzuschliefen. Wir leiteten jedoch nicht
den fithrenden Term mit zusatzlichen relativistischen Strukturen ab, sondern machten nur
einen ersten aber wichtigen Schritt, namlich die nichtrelativistischen Jacobi Impulse und
Energieargumente des nichtrelativistischen fiihrenden Termes durch die relativistischen
Groflen zu ersetzen. Als Folge dnderte sich der fiihrende Term. Zuletzt leiteten wir den
Wirkungsquerschnitt entsprechend der iiblichen relativistischen Streutheorie ab. Daher
anderte sich der Phasenraumfaktor des Wirkungsquerschnittes verglichen mit dem der

nichtrelativistischen Streutheorie.

Wir wandten die Formulierung des Nd Aufbruchsprozesses in einem 3D Verfahren
auf die Proton-Neutron Ladungsaustauschreaktion im inklusiven pd Aufbruchsprozef3
an. In diesem Prozefl wird ein Proton auf ein Deuteron geschossen, das dann auf-
bricht, und am Ende wird das Neutron detektiert, wahrend die zwei Protonen nicht
gemessen werden. Wir berechneten den spingemittelten differentiellen Wirkungsquer-
schnitt (kurz den Wirkungsquerschnitt) und mehrere Spinsobservablen: die Polarisierung
des Neutrons, die Analysierstirke des Protons und die Polarisierungstransferkoeffizienten.
Wir diskutierten drei Aspekte unserer Berechnungen. Erstens verglichen wir unsere
Berechnungen mit den PW Berechnungen bei Laborenergien des Protons bis 197 MeV.
Es wurde gezeigt, dafl unsere Berechnungen mit den PW Berechnungen bis Ej,;, = 100
MeV noch iibereinstimmten. Es gab jedoch schon eine Diskrepanz von ungefdhr 1.7%
in der Spitze des Wirkungsquerschnittes bei 100 MeV, wobei die PW Berechnungen 2N
Zustiande von 2N Gesamtdrehimpulsen 7 < 7 und 3N Zustinde von 3N Gesamtdrehim-
pulsen J < 31/2 beriicksichtigten. Mit dieser grofien Zahl von Drehimpulszustinden
in den PW Berechnungen erreicht man tatsachlich schon die Grenzen der heutzutage
moglichen PW Berechnungen. Bei Ej,;, = 197 MeV stimmten unsere Berechnungen
nicht mit den PW Berechnungen basierend auf j < 7 und J < 31/2 iiberein, weil
die PW Berechnungen nicht ausreichend konvergierten, wie in einem Konvergenztest
gezeigt wurde. Der Test zeigte auch, dafl 2N Gesamtdrehimpulszustande fiir die PW
Berechnungen fiir die Konvergenz wichtiger sind als 3N Gesamtdrehimpulszustande. Fur
die gleiche Zahl von Gesamtdrehimpulszustdnden nehmen die Diskrepanzen zwischen un-
seren Berechnungen und den PW Berechnungen bei wachsender Energie schnell zu. Wir
kamen zum Schluf};, dal PW Berechnungen bei Ej,;, > 100 MeV nicht sicher benutzt

werden kénnen, um den Nd Aufbruchsprozefl gut zu beschreiben.

Zweitens wollten wir zeigen, wie wichtig Mehrfachstreueffekte sind. Dazu verglichen
wir bei Ej,, = 197 MeV unsere Berechnungen mit den vollen Faddeev PW

Berechnungen, in welchen nicht nur der fiihrende Term sondern auch die Mehrfach-
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streuterme der vollen pd Aufbruchsamplitude eingeschlossen wurden. Die Vergleiche
zeigten, dafl Mehrfachstreueffekte bei dieser Energie tatsichlich eintreten und meistens
in dem Wirkungsquerschnitt und der Analysierstirke zu sehen sind. Fiir diese bei-
den Observablen fiihrte der Einschluf§ der Mehrfachstreuterme in den Berechnungen zu
Ergebnissen, die naher bei den Daten liegen. Wir kamen zum Schluf}; dafl Mehrfachstreu-
terme der vollen Nd Aufbruchsamplitude bei Ej, = 197 MeV in den Berechnungen

beachtet werden miissen.

Bei Energien, die hoher als 197 MeV sind, hatten wir keine vollen Faddeev PW
Berechnungen zur Verfiigung, mit denen man vergleichen konnte. Deshalb verglichen
wir direkt mit den Daten bei Ej,, = 346 und 495 MeV. Bei diesen Energien konnten wir
nur vermuten, dafl Mehrfachstreuterme vielleicht auch benétigt sind, da Diskrepanzen mit

den Daten zu sehen waren.

Schliefllich betrachteten wir den Effekt relativistischer Kinematik in unseren
Berechnungen. Dazu verglichen wir unsere 3D Berechnungen in nichtrelativistischer und
relativistischer Kinematik miteinander, und dies bei Energien von 197, 346 und 495 MeV,
wo auch experimentelle Daten vorliegen. Bei diesen Energien sahen wir relativistische
Effekte vor allem in den Wirkungsquerschnitten und den Analysierstarken. Fiir diese
beiden Observablen fiihrte die relativistische Kinematik zu besseren Ergebnissen beziiglich
der Daten. Die Effekte wurden grofiler, wenn die Energie stieg, welches man von
relativistischen Effekten erwartet. Aus den Vergleichen zu den Daten fiihrten die
beobachteten relativistischen Effekte zusammen mit den vorher gesehenen
Mehrfachstreueffekten zu der Vermutung, dafl in dem Energiebereich von ~ 200—500 MeV
beides notwendig ist, = Mehrfachstreuterme und relativistische Korrekturen,
um den pd Aufbruchsprozel besser zu beschreiben. Um herauszufinden, bei welcher
Energie relativistische Effekte bereits wichtig werden, verglichen wir unsere 3D
Berechnungen in nichtrelativistischer und relativistischer Kinematik bei 16 and 65 MeV.
Wir fanden, daf} relativistische Effekte schon bei Ej,;, = 65 MeV anfingen, deutlich

sichtbar zu werden.

Zum Schluf} wollen wir unsere Arbeit in einem Abschnitt zusammenfassen. Wir
entwickelten ein 3D Verfahren fiir den NN Streuprozel, das Deuteron und den Nd
Aufbruchsprozefl. Das 3D Verfahren erwies sich als eine gute Alternative zu der PW
Zerlegung und erscheint bei hoheren Energien unausweichlich. Im Gegensatz zu der PW
Zerlegung erfordert das 3D Verfahren viel weniger algebraische Arbeit. Bei niedrigen
Energien, wo die PW Berechnungen noch zuverlassig sind, zeigen die 3D Berechnungen

perfekte Ubereinstimmungen mit den PW Berechnungen.
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Von der Stelle an, wo wir unsere Arbeit beendeten, gibt es noch viele Untersuchungen iiber
Wenignukleonsysteme, die im 3D Verfahren durchzufiihren sind. Im Fall des NN Systems
ist es interessant, neueste und in Zukunft erscheinende NN Potentiale, wie z.B. das auf der
chiralen Storungstheorie basierende NN Potential [60], im 3D Verfahren umzusetzen. Auf
Wenignukleonbindungssysteme mit Nukleonenzahlen grofler als 2 sollte das 3D Verfahren
in jedem Fall angewandt werden, da das Triton [61, 62, 63], das a-Teilchen [64, 65] und
andere noch komplexere Wenignukleonbindungssysteme sehr viele Drehimpulszustande
enthalten. Bei dem 3N Streuprozef 16sten wir noch nicht die volle Faddeev Gleichung,
welches aber, wie wir zeigten, erforderlich ist. Wir beriicksichtigten auch noch nicht 3N
Krafte. Im Hinblick auf Relativitat betrachteten wir bis jetzt nur relativistische Kine-
matik. Wir beriicksichtigten noch nicht die Lorentztransformation der NN T-Matrix [58]
und die Wignerrotationen [59]. Diese werden interessante und herausfordernde Unter-
suchungen sein. Besonders bei Beriicksichtigung dynamischer Merkmale von Relativitat
wird das 3D Verfahren sich als sehr lohnend erweisen. Aus unserer Sicht wird der nichste
Schritt sein, die Mehrfachstreuterme der vollen Nd Aufbruchsamplitude und 3N Krafte
zu beriicksichtigen, und zunachst nur relativistische Kinematik anzuwenden. Dies wird
ein Gebiet hoherer Energien zugéinglich machen, welches bis jetzt noch nicht griindlich

untersucht wurde.
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Chapter 1

INTRODUCTION

The goal of this work is the development of a practical and accurate scheme for few-
body calculations, which does not rely on the traditionally preferred method of angular
momentum decomposition.

The vast information about the nuclear (or strong) interaction has been and still is
obtained with collision experiments. Because of the short range of the nuclear interaction
and thus the small distances involved, collision experiments testing the short-range part
of the strong force should be carried out at higher energies. Experimental efforts at
the Kernfysikalische Versneller Institute (KVI) in the Netherlands, the Research Center
for Nuclear Physics (RCNP) in Japan, the Cooler Synchrotron (COSY) in Germany, the
Indiana University Cyclotron Facility (IUCF) in the United States, and other laboratories
concentrate on probing the nuclear force in a three-nucleon (3N) context to find out if
the strong force acts only between two nucleons at a time or if there is a significant

contribution of a force acting directly between three nucleons.

Theory and calculations of three nucleon systems have a long history. After the first
formulation of a basic scheme by Faddeev [1] and a reformulation in terms of triads of
Lippmann-Schwinger equations [2], the first applications were carried out by Amado [3],
calculating low energy neutron-deuteron (nd) scattering in a simple model based on rank 1
Yamaguchi S-wave nucleon-nucleon (NN) potentials [4]. This was followed up by allowing
for higher rank NN potentials, which however did not yet include the full complexity of
NN forces. The restriction to finite rank NN forces leads to a simplification, namely that
the amplitude in the Faddeev equations depended only on one continuous variable. This
was of course highly desirable at that time due to the limited computer resources. For a
list of references on those early investigations see Ref. [5].

With the advent of more realistic NN forces, like e.g. the Paris [6], Nijmegen [7], Bonn

[8] and Argonne [9] potentials, which were local or non-local in nature and therefore quite

1
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different from finite rank forces, the challenge was to employ them directly, which then
leads to a dependence on two continuous variables in the amplitudes of the 3N Faddeev
equations. Pioneering calculations along that line were carried out by the Utrecht group
[10]. All these investigations were concerned with low energies including the 3N bound
states. Here it was most natural to take advantage of conserved quantities in the 3N
system, e.g. the conservation of the total angular momentum, and set up the calculations
in a basis, where the basis states are eigenstates of the total angular momentum. Espe-
cially at low energies, only a few angular momenta (often only s-waves) are expected to

contribute to observables due to the angular momentum barrier.

During the last two decades calculations of nd scattering based on momentum space
Faddeev equations experienced enormous improvement and refinement. It is fair to state
that below 200 MeV projectile energy the momentum space Faddeev equations for 3N
scattering now can be solved with very high accuracy for the most modern two and three

nucleon forces. A summary of these achievements is given in Ref. [5].

During the same two decades experimental facilities with higher beam energy were
built, and older facilities were either upgraded or seized to exist, with a few exceptions.
This is a natural trend if one wants to probe the strong interaction at shorter distances.
However, this trend to ever higher beam energies has a fatal consequence for the tra-
ditional 3N scattering calculations carried out in a partial wave (PW) truncated basis.
Working in an angular momentum basis means that continuous angle variables are re-
placed by discrete orbital angular momentum quantum numbers. This reduces the num-
ber of continuous variables, which have to be discretized in a numerical treatment. For low
projectile energies this procedure appears physically justified due to arguments related to
the centrifugal barrier. Now going to high energies the algebraic and algorithmic work
carried out in a PW decomposition can be quite involved when solving Faddeev equations.
The most crucial fact however is, that if one wants to consider 3N scattering at a few
hundred MeV projectile energy, the number of partial waves needed to achieve numerical
convergence proliferates, and limitations with respect to computational feasibility and
accuracy are being reached. At this point, the method of PW decomposition looses its
physical transparency, and using angular variables directly becomes more appealing. It
appears therefore natural to abandon PW representations completely and work directly
with vector variables. As an aside, this is common practice in bound state calculations
based on variational [11] and Green’s Function Monte Carlo (GFMC) methods [12], which

are carried out in coordinate space.

A momentum space approach along this vein was pioneered for a system of three

bosons in Refs. [13, 14], where the momentum space Faddeev equations were solved for



the bound as well as the scattering state.

The aim of this work is more ambitious. We want to employ realistic NN interactions
in our calculations. This means we have to incorporate spin degrees of freedom into a
formulation of the Faddeev equations. Since the first step to any Faddeev calculation is
the solution of the Lippmann-Schwinger (LS) equation for the two-nucleon T-matrix, this

will have to be our first focal point.

Although there are already suggestions in the literature how to solve the two-body LS
equations for realistic NN potentials without PW decomposition [15, 16, 17] we prefer to
develop our own scheme which will be consistent with our later use of the NN T-matrix
in 3N scattering calculation. We choose an approach based on the total helicity of the
NN system as spin variable. From our point of view this is the preferred starting point to
later progress to the 3N system. In this work we will not solve the full Faddeev equations
for three nucleons, but rather consider the first term in the multiple scattering series built
up by the Faddeev equations, and concentrate on break-up observables. Of particular
interest are the spin-transfer coefficients in the (p,n) charge exchange reaction on the
deuteron, which recently has been measured at IUCF [18] and RCNP [19]. Since these
measurements are carried out at ‘intermediate energies’, i.e. 197 MeV and 346 MeV, the
first assumption is that it may be sufficient to consider only the first order term. However,
since the projectile energies are already high, we will also consider relativistic kinematic

effects.

The thesis is organized as follows. Chapter 2 is written only to provide a short review
of NN scattering. There some definitions and quantities are introduced, which are used

in the next chapters.

In Chapter 3 we begin to develop the formulation for NN scattering based on vector
momenta and helicity eigenstates, in the following called momentum-helicity basis states
and the formulation is shortly called the 3D formulation. These basis states are defined
with all necessary symmetry properties for fermion states. We then define six invari-
ant operators characterizing any Galilei invariant NN potential, which is invariant under
parity, time-reversal and rotations. For our application we consider two different NN
potentials, the Argonne V18 (AV18) potential [20] as representative of the most modern
NN potentials describing the NN data below 350 MeV with a x?/datum of ~ 1, and the
Bonn-B potential [21] as representative for a meson exchange potential. For our work it
is crucial that the potentials can be given either in direct operator form (AV18) or as
Feynman diagrams (Bonn-B). Other modern potentials, which are fitted by parameters

that depend on partial waves, are not suited for our formulation.

In Chapter 4 we show results from our calculations for NN scattering and discuss
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the NN potentials in some detail. We compare some NN phase shifts obtained from the
3D calculations to those obtained from traditional PW calculations. We also show the
behavior of the T-matrix elements and compare NN scattering observables to data and
to the results of the PW calculations.

In Chapter 5 we formulate a 3D approach for the deuteron using momentum-helicity
basis states. We derive two formulations. The first is based on a 3D ansatz, while the
second one is a mixture of 3D and PW techniques. For both formulations we intro-
duce a set of 3D deuteron wave function components and derive the deuteron eigenvalue
equation. In the second formulation we derive the deuteron wave function in operator
form. Projected onto the momentum-helicity basis states this lead to the 3D deuteron
wave function components with analytic angular behavior. We perform calculations for
both formulations and connect the numerical results to standard PW calculations. Finally,
using the deuteron wave function in operator form, we investigate some spin configurations
of the two nucleons inside the deuteron.

In Chapter 6 we formulate the nucleon-deuteron (Nd) break-up process in a 3D, non-
relativistic Faddeev scheme. We derive the leading term of the full Nd break-up amplitude
in the momentum-helicity basis. The leading term is given in terms of the T-matrix
elements. Then we include relativistic kinematics in the formulation and derive the cross
section according to relativistic scattering theory. The application of relativistic kine-
matics affects not only the phase space factor of the cross section but also the leading
term of the full Nd break-up amplitude.

In Chapter 7 we show results from our 3D calculations for the (p,n) charge exchange
reaction in the inclusive proton-deuteron (pd) break-up process. In this process a proton
is directed towards a deuteron, which then breaks up, and finally the neutron is detected,
while the two protons are not detected. We show the spin averaged differential cross
section and some spin observables, which are the neutron polarization, the proton ana-
lyzing power and the polarization transfer coefficients. We begin with comparisons to the
PW calculations at various energies below 200 MeV and test the convergence of the PW
calculations for energies up to ~ 200 MeV. Next we compare at ~ 200 MeV to the full
Faddeev PW calculations, which include also the rescattering terms of the Nd break-up
amplitude, and check the importance of rescattering terms at energies ~ 200 MeV. Un-
fortunately for energies higher than 200 MeV there is no full Faddeev PW calculation to
compare with. Therefore, we compare our results up to >~ 500 MeV directly to the data.
Last but not least we compare between our 3D calculations with and without relativis-
tic kinematics, and find that as expected the importance of the relativistic kinematics

increases with increasing energy. Finally we summarize in Chapter 8.



Chapter 2

SCATTERING OF TWO
NUCLEONS

This chapter is not meant as a thorough presentation of scattering theory for two nucleons
or even more general for two particles since that is already given at many places such as
quantum mechanics textbooks and those specializing in scattering processes, for example
Ref. [22]. In fact, compact presentations of two nucleon (2N) scattering can be found
in Refs. [23, 24, 25]. Hence, the presentation here will be even more compact and this
chapter is meant for practical purpose and to give a short summary of necessary formulas.
In addition, definitions of some terminologies and quantities used in the next chapters can

be found here.

2.1 Kinematics of the Two-Nucleon System in La-

boratory and Center of Mass Reference Frames

A proton and a neutron are commonly called nucleon. Though the proton mass m, =
938.272 MeV differs from the neutron mass m, = 939.56533 MeV, this difference is
relatively small (~ 0.14%). Therefore, the 'nucleon mass’ m may be given by the average
of m, and m,,.

Let k; and k! be the nucleon’s momentum in the laboratory reference frame (laboratory
frame) in initial and final state, respectively, where i = 1, 2 indicates the 7" nucleon. The
corresponding nonrelativistic energies are denoted by E; and E, respectively. Assuming
nucleon 1 is the projectile and nucleon 2 is the target (ko = 0), the momentum situation
can be displayed by Fig. 2.1, where 6, is the scattering angle in the laboratory frame. The

figure also shows quantities belonging to the center of mass reference frame (c.m. frame),

5
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acircle of radius q representing
energy conservation

Figure 2.1: The initial and final momenta, both in laboratory and c.m. frames, in a 2N

scattering process, where nucleon 1 acts as the projectile and nucleon 2 as the target

(ko = 0). The circle of radius ¢ represents the energy conservation.

i.e. the scattering angle # and the relative momentum between the two nucleons in initial

and final states, q = $k; and q' = (k| — k}), respectively. It is clear that 0 = 26,4,

The total energy in the laboratory frame (Ej,) and that in the c.m. frame (E,,,) are

Eiw = Ey
k2
By = —
lab 2m
2

q
Ecm = @

El + E, (2.1)
k’2 k’2

om * am (22)
2 12

q q

= m (2:3)

where p = %m is the reduced mass of the 2N system. E.,, together with the energy of

motion of the center of mass of the two nucleons sum up to Ej,;, and consequently we can

get the relation between Ej,, and E,,

Elab -

(2.4)

which can also be directly seen from the fact that k; = 2q. Note that this relation between

Ei and E,p, is correct if one of the two nucleons is initially (or finally) at rest.
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2.2 Scattering Matrix and Lippmann-Schwinger Equ-

ation

The essential information of a nucleon-nucleon (NN) scattering process is contained in
the scattering matrix. There are T-matrix, S-matrix, M-matrix and these matrices are

related to each other as

S = 1-2mi§(E' — E)T (2.5)
M = —p(27)*T. (2.6)

The delta function in the expression for the S-matrix indicates that the S-matrix is an
on-the-energy-shell (on-shell) quantity whereas the other two scattering matrices are not
affected by this restriction and therefore have off-shell as well as on-shell properties. We
solve for the T-matrix in our NN scattering calculations and later use it as input for our
3N calculations, where the T-matrix appears as an off-shell quantity.

The T-matrix obeys the equation
T =V +VG,T, (2.7)

which is the Lippmann-Schwinger Equation (LSE) for the T-matrix. V is the matrix
operator of the NN potential, Go(z) = (2 — Hp) ! is the free propagator with Hy being
the free Hamiltonian and z a complex number. The scattering wave is spreading out
from the scattering center, and for an outgoing wave the corresponding free propagator
is G§ (E) = lim,_,g Go(E + i), where E is the energy at which the scattering occurs and
the limit can be understood as to bring z close to the physical spectrum of Hy.

The T-matrix element is defined as
T(d,o5q,0) =(d, | T g, a), (2.8)

with a, o being the discrete quantum numbers considered, like spin and isospin, and
lq, ), |d’, ') representing the initial, final state of the 2N system, respectively. A similar

definition applies also to the NN potential matrix element
V(d,d'5q,0) =(d,d|V]q,a). (2.9)
With the 2N states |q, @) being complete

Z/dq|q, @) (g,0| =1, (2.10)
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it is straightforward that the LSE for the T-matrix element, which is the main equation

in the calculations, is given by

T(q,a'5q,0) =V(d,d;q,0) + Z/dq”V(q’,o/;q”,a”)GJ(Eq)T(q”,a”;q, a), (2.11)

Oé”

with
"2

N . 1 _ 7 _

2.12
e—0 Eq + 1€ — Eqn ( )

.
2.3 Cross Section and Spin Observables

Here we specify the quantum number « in the 2N state |q,«) as the magnetic spin

quantum numbers of both nucleons

|, @) = [a, msmg) (2.13)

with my; = i% (i =1, 2). Thus, there are four spin states which constitute a complete
basis, in which any spin state of the two nucleons can be given. A general pure state

|q,n) can be written as

[SIES

|q7 TL> = Z a(n) (msb ms2) |q7 mslms2> . (214)

1
Ms1,Ms2=—7%

With regard to spin the state |q,n) is a vector of four components and the T-matrix
element given in Eq. (2.8) is a 4 x 4 matrix. The general spin operator for such a state is

also a 4 x 4 matrix and may be chosen as a product of two 2 x 2 matrices
=oV @0, (nv=0123), (2.15)

with o¢ and o; (i = 1,2,3) being a matrix of one and the Pauli matrices, respectively:

10 01 0 —1 1 0
0o = ) 01 = ) 09 = ) 03 = ) (216)
01 10 0 0 —1

and the upper indices 1, 2 denoting the nucleon on the state of which the o, operator
works.

In experiments we deal not only with two nucleons but many more in the beam and
the target. Therefore, the state is a mixed state of pure 2N states as given in of Eq. (2.14),

and the expectation value of an observable (O) is calculated by mean of a density matrix

P
p=_|n)pn(n|, (2.17)



2.8 Cross Section and Spin Observables 9

where p,, is the normalized probability of the n'® pure spin state according to Eq. (2.14)

a™ (g1, mg2) [msrmys) . (2.18)

Il
M-

)

1
Ms1,Ms2=—75

For instance, in the final state:
_ Tr{ps0}

0) = —————, 2.19
=Ty 219
with
py = final density matrix
= Mp;M' (2.20)
p; = initial density matrix.

Using Eq. (2.19) one derives the expression for the expectation value of a general spin
observable <al(})a,(/2)> in the final state in relation to the values <0&1)0g)>. in the initial
state
1 2 2
I <U(1)0'(2)>f =-> <O'(1)Ué )>i Tr {MUS)Ué )MTU(I)O'(Q)} , (2.21)

«
a:ﬂ

where [ is the differential cross section summed over all possible final spin states

_~doj _Trips} 1 (1) () (1), yrt
I_Zj:d—Q_ Tri{pi} _Z§<UO‘ oy >iTT{MUa P M} (2.22)
(in the last equality Eq. (2.21) is applied again).

The simplest case is if the beam and target are unpolarized and no spin measurements
in the final state are made. In this case one measures the spin averaged differential cross

section

Iy = iTr {Muty (2.23)

The spin projections on a certain axis must be specified and therefore unit vectors are
needed. Since there are two reference frames - laboratory and c.m. frames - two sets of
unit vectors are defined, one set for each frame. But as can be checked in Ref. [25] for the

2N system the two sets are the same:

. L c.m. frame a, N, N x q
unit vectors for the initial state : . (2.24)
laboratory frame l,n, s
. c.m. frame P, N K
unit vectors for the final state : . (2.25)
laboratory frame I, o, ¢
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with
k; x K/ . x q
o= =L -N= -4 (2.26)
ki x ki la x|
1 = ki=q (2.27)
§ = nxl=Nxgq (2.28)
!/
I = K-p=979 (2.29)
la+d|
,_
¢ = f'xI'=K=—+—1 (2.30)
ld' —q

In connection with a Cartesian coordinate system the beam’s momentum k; is set typically
to point along the positive z-axis and the scattered nucleon’s momentum ki is in the

xz-plane. Thus, the scattering takes places in the xz-plane and the unit vectors are

0 1 0
I1=[o0]|, s = 0|, n=n= ,
0 0
(2.31)
sin 04 cos Oy
= 0 : § = 0
cos Oyap — sin G4

According to Eq. (2.21) there seems to be 16 x 16 = 256 possible initial-to-final
spin transitions in a NN scattering process. Rotational, parity, time-reversal and isospin
invariances (the last one together with parity invariance lead to spin invariance), however,
forbid many transitions and moreover cause some permitted transitions to be related to
each other. Under these invariances the scattering matrix M can be expressed in terms of
a few parameters called Wolfenstein parameters [26, 23] (a, ¢, m, g, h), which depend on
the magnitudes ¢’ of final and ¢ of initial relative momenta as well as the angle between

the two momenta q' and q

M = a+c(e® +0?)-N+m(e? N)(e@ . N)

+(g+ 1) (W - P)e® -P)+ (g — h) (V- K)(e? - K) (2.32)
1

a = ZTT{M} (2.33)
1

¢ = gT7~{Ma§1>+z\4a§ﬁ>} (2.34)
1

m = -Tr{MoVo{?} (2.35)

4
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1
g = gTr{Maél)ag(f)—i-Magl)agQ)} (2.36)
1

h = gTr{[—Mag(Cl)af) + MoWMoP]cos O+ [MoVo® + MoWeP]sing}  (2.37)

Note that these expressions for the Wolfenstein parameters are for the chosen xz-scattering
frame, see Eq. (2.31). The NN scattering observables can be calculated using M directly
or the Wolfenstein parameters.

Finally, we close this chapter by showing briefly seven typical types of experiments
and the corresponding spin observables. Comprehensive descriptions of these experiments

can be found in Ref. [23]. The experiments are denoted by the reactions as

1. N2(N1,N1)N2 2. N2(N1,N1)N2 3. N2(N1,N1)N2 4. N2(N1,N1)N2
5. N2(N1,N1)N2 6. N2(N1,N1)N2 7. N2(N1,N1)N2,

where N1 and N2 stand for nucleon 1 (the projectile) and nucleon 2 (the target),
respectively, the little arrows over N1 or N2 mean that the corresponding nucleon is
polarized or that the polarization of that nucleon is measured. Let us take for example
the fifth experiment: N2(]\71, Nl)NQ. This reaction means that a polarized projectile
(N1) is directed to an unpolarized target (N2) and finally the polarization of the re-
coil nucleon (N2) is measured. The polarization of the scattered nucleon (N1) is not
measured. Note that processes 4 and 5 are only distinguishable for a np system.

In the first experiment the beam and target are unpolarized and no spin measurement

on the outgoing nucleons are made. One measures only the spin averaged cross section

1
_ T

I, = 4Tr{MM}
= Ja|* + |m|* + 2|c|* + 2|g|* + 2|h|%. (2.38)

In the second experiment the beam and target are unpolarized. The polarization
of the scattered nucleon is of interest and therefore after the process one measures the
spin direction of this nucleon. According to the general formula for spin observables
(Eq. (2.21)) the polarization Py = <0'(1)> = <0'(1)0(()2)> of the scattered nucleon is

1
_ t (D)
P, = 4IOT7°{MM0' }
1
_ 5 (1)
= n4IOTr{MM oV}
ﬁQRe{(a +m)c*}

Iy ’

(2.39)

where I is the spin averaged cross section given in Eq. (2.38). Parity invariance affects

the process such that the polarization must be normal to the scattering plane.
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The third experiment is to measure the asymmetry A, defined as

I, I

T T

(2.40)

where I;, = I(0,¢) and I = I(0, ¢ + ) are the left-scattering and right-scattering cross
sections, respectively. A polarized beam is directed to an unpolarized target. Due to
parity invariance a contribution to the cross section arises only if the polarization is

normal to the scattering plane. The cross section is

1 3
- - (1) @ st
I = 4azzjo<% ). Tr{Mo) Mt}
1
= lo+Pi-alr {M(eV - a)MT} (2.41)
and the left- and right-scattering cross sections are

1
I, = IO+ZPi-ﬁTr{M(o-(1)-ﬁ)MT} (2.42)

1
Ipn = IO—ZPi-ﬁTr{M(o-(l) )M} (2.43)

Therefore,
P;-alr {M(cW - a)M'}

41,
= P, -nA,, (2.44)

with

A, = %%TT{M(U(I)-IE)MT}
2Re{(a + m)c*}
Iy

This quantity A, called analyzing power is often denoted by A,, since n = gy for the

Yo
typical scattering frame given in Eq. (2.31).

In experiment 4 one starts with a polarized beam and an unpolarized target and finally

measures the polarization of the scattered nucleon, Py = <0'(1)>
LS /0 W 3t
IP; = 1§<U" ). Tr{MoP Mg}

= I,Po+ iPi Tr{MoW iV}
= L{a[P + D(P;-0)] +1'[A(P;-1) + R (P; - 8)]
+§ [AP;-1) + R(P; - 8)] }. (2.46)
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Here we meet other spin observables, summarized in the depolarization tensor D;;, which
is defined as

~
.

1 .
I,Dy; = [ Tr {M(aW - j)Mi (D D)}, (2.47)

and the observables D, R, R', A, A" appearing in the polarization ]3f are

1
1D = IyD,, = ZTT{M(U(I)-ﬁ)MT(a(I) -h)}
= laf* +[m|* + 2[cf* — 2|g|* — 2[A[? (2.48)

1
IR =1,Dy, = ZTr{M(a“%é)M(a(l) -8}

o 6
= (la|* — |m|* — 4Re{gh*}) cos 3 2Im{(a — m)*c} sin 3 (2.49)

1 .
IR = IyDy, = ZTr{zw(a(l)-é)]\ﬂ(a@-l’)}

= (la]* = |m|* + 4Re{gh*}) sing +2Im{(a —m)*c} Cosg (2.50)

1 .
LhA=1LDy = ZTr{Jw(a(l)-l)M(a“)-s’)}

7 7
= —(Ja]* = |m|* — 4Re{gh*})sin 5 2Im{(a —m)*c} cos 2 (2.51)
1 - .
LA =Dy = Tr {M(aV )M (W 1)}
6 6
= (la]* = |m|* + 4Re{gh*}) cos 3 2Im{(a —m)*c} sin 3" (2.52)
Experiment 5 is similar to experiment 4 and can be distinguished only in a np system.

One starts with a polarized beam and an unpolarized target but finally one measures the

polarization of the recoil nucleon Py = <0'(2)>

IP; = ii}<ag)>iTT{MaS)MTo-(2)}

= I,Po+ iPi Tr{MoeWMic?}
= I {a[P+ Dy(P; - 0)] +1'[4,(P; - 1) + Ry(P; - 8)]
+§ [A(P; - 1) + Ry(P; - 9)]} (2.53)

_ 2Re{(a + m)c*}
Iy '

P = 1y (MM (e® - h)}

2.54
1L (2.54)

Here we have again new spin observables, summarized in the polarization-transfer tensor
K;j, which is defined as

~
.

LK = Tr{M(@" - j)Mi(e® )}, (2.55)

N
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and the observables Dy, R;, R}, A;, A} appearing in the polarization P are

1
1D, = [hK,, = ZTr{M(aﬂ)-161)J\4”f(a<2>-ﬁ)}

= 2(Re{am™} + |c[* + [g]* — [h]*) (2.56)
LR, = LKy, = iTT {M(aV - 8) Mt (e - 1)}
= 2Re{(a+m)g" + (a —m)h™}sin g + 4Im{cg*} cos g (2.57)
LR =LK, = —Tr {M(aW-8) M (e -8}
= 2Re{(a+m)g* — (a —m)h"} cos g — 4Im{cg*} sin g (2.58)
LA, = —I)Ky = —%Tr {M(e®V )M (e? 1)}
= —2Re{(a+ m)g* + (a — m)h*} cos g + 4Im{cg*} sing (2.59)
LA = LKy, = —iTr {M(eV )M (e® - 5)}
= 2Re{(a+m)g" — (a —m)h"}sin g + 4Im{cg*} cos g (2.60)

Note the minus sign in the definitions for A; and A}. These are the definitions given in Cen-
ter for Nuclear Studies Data Analysis Center (CNS DAC, http://gwdac.phys.gwu.edu/).
We take these definitions since later we compare with experimental data from this site. In
Ref. [23] the definitions for A, and A} have the opposite sign. In case of identical particles
these expressions are the same as the ones given in Eqs. (2.48)-(2.52) if one replaces 6 by
7 — 0 (see for instance [23]).

In experiment 6 the beam and target are unpolarized. In the final state the spins of
the two outgoing nucleons are simultaneously measured

I<U(1)U(2)>f _ %T?"{MMTU'(UU@)}

= Iy (CyxNN + CppPP + Ci KK + Cicp(PK + KP)) . (2.61)

Cjj is called the spin correlation parameter and is defined as

1 N N
1,Cyj = JTr (MMt (e i) (0 -j)}. (2.62)
ACCOI‘diIlgly, ONN; Opp, CKK; CKP are

1 . .
ICyy = JTr {MMT(U(” N)(e® - N)} = 2(Re{am"} + |c* = |g* + |h[*) (2.63)

ICpp = JTr r{MM(c™ - P)(c®-P)} = 2Re{(a — m)g" + (a+m)h"}  (2.64)
ICxx = iTr {Mt (o K)(a<2> ‘K)} =2Re{(a —m)g" — (a+m)h’}  (2.65)
I,Ckp iTr (MM - K)(e® - P)} = —4Im{ch"}. (2.66)
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It can be shown that Cpx = Ckp.
In the last experiment both the beam and target are polarized and no spin measure-

ments are made in the final state. One measures the cross section

I = i o% <0&1)Ué2)>i Tr {MO’S)O'g)MT}

- IO (1 + 2szAy + ]szxAxx + PiyyAyy + ]DizzAzz - QszAzx) . (267)

y y
Py = <a,(€1)al(2)>i are the polarization and tensor polarization in initial state, respectively.

The indices are for the scattering frame given in Eq. (2.31). P, = <a(1)>. = <0(2)>. and
(3 (3

A, is the already shown analyzing power. The other observables are the spin correlation

parameters A;;’s, which are also called tensor analyzing powers defined as

Aij = 4%% {M(aW -i)(e® - jMT}. (2.68)
Accordingly, Agq, Ayy, A.., A, are
IoAgy = IpAy, = iTT {M(aV-8)(c® -8)MT}
= 2Re{(a —m)g* — (a +m)h* cos 0} +4Im{ch*} sin@ (2.69)
IhA,, = A, = iTr {M(cV - 8) (e -n)MT}
= 2(Re{am*} +|c]* — |g|* + |h|*) = [L,CnxN (2.70)
LA, = LA, = %Tr {M(a® -1)(e® 1M}
= 2Re{(a—m)g" + (a + m)h* cos @} — 4Im{ch*}sin@ (2.71)
DA, = —IpA;, = —iTT {M(aW - 1)(a® -8)M"}
= —2Re{(a+ m)h*}sinf — 4Im{ch*} cosf (2.72)

It can be shown that A,, = A,,. Again, note the minus sign in the definition for A,,,
which is taken from CNS DAC. In Ref. [23] the definition for A,, has the opposite sign.
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Chapter 3

THREE-DIMENSIONAL
FORMULATION FOR
NUCLEON-NUCLEON
SCATTERING

In the standard partial wave decomposition for NN scattering (see for instance Chapter 2
of Ref. [25]) a set of the Lippmann-Schwinger equations (LSE’s) for the T-matrix is solved
for each total angular momentum 5 of the two nucleons and one calculates up to juz,
where the calculation converges, which means that the contribution from j = j,.e + 1 to
the value of the investigated observable is relatively small or negligible. If both isospins
exist (np scattering) the set for each j > 0 consists of six one-dimensional LSE’s: two sets
of two coupled equations plus two uncoupled ones. For ;7 = 0 there are only two uncoupled
LSE’s. The largest number of LSE’s is then 6j,,4,; + 2, which applies to np scattering.
For example, with j,,.. = 2 there are 14 LSE’s in np scattering. For pp scattering the
number of LSE’s is roughly half of that for a np system with the same j,,,,. The higher
the energy involved in the process the larger j,,., and the more LSE’s are to be solved.
For instance, at 300 MeV nucleon laboratory energy one needs up to ., = 16 in order
to describe the np differential cross section sufficiently well [27].

In this chapter we formulate the technique to treat NN scattering without partial wave
decomposition. The goal is to have a small set of the LSE’s for the T-matrix, so that in
contrast to the standard partial wave calculations just described one solves only a fixed
small number of the LSE’s regardless of the energy involved in the process. We begin the
formulation with the definition of the basis state followed by discussions on its properties

and end up with the set of the LSE’s. In order to calculate NN scattering observables, we

17
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connect the T-matrix obtained from this set of the LSE’s to the ” physical” T-matrix more
appropriate for calculating observables. This ”physical” T-matrix is given as function of
relative momentum and individual spin (quantized in the z-axis) and isospin quantum
numbers of the two nucleons. We also connect this formulation to the standard partial
wave representation.

We do not use a spin representation with a fixed quantization axis, for example the
z-axis. Instead, the total spin of the two nucleons is given in its helicity representation,
where the quantization axis points in the direction of their relative momentum. One
practical advantage of working with helicity states is that these states are the eigen-
states of the helicity operator appearing in the NN potentials given in momentum space.
NN potentials of one-boson-exchange type are constructed directly in terms of helicity
operators, but in this case referring to the individual nucleons [28, 29]. Another advantage
of using helicities is related to a relativistic scheme. Going to high energies one may en-
counter relativistic effects. If the formulation is extended to a relativistic scheme then
using the helicity representation is less complicated than using the spin representation

with a fixed quantization axis [30].

3.1 Momentum-Helicity Basis States

For our purpose we define basis states called the momentum-helicity basis states - a name,
which is simply taken from the components of which they are constructed. To represent
a system of two nucleons the basis states must have some properties, i.e. they have to be
antisymmetric and have a definite parity. Here we present step by step the construction
of the basis states so that they have these properties. We follow with a discussion on their
other properties.

We consider the helicity representation of the total spin S = S; + S, rather than
that of individual spins S; and Sy of the two nucleons. This has the advantages, that
instead of four we deal only with two spin states, i.e. the singlet (S = 0) and the triplet
(S = 1) states. Also, the total spin S is conserved (to a high degree of accuracy). Another
advantage is that if it is necessary to apply the formulation to systems of not spin-half
particles the modification is minor.

The total spin state |zSA) of a two nucleon system with quantization axis along the

z-axis, and A being the total-spin projection on this axis, has the form

L1 >

zZ—m
5!

S mlmQA) is the Clebsch-Gordan coefficient,

11
ZSA) = 3 0(555; m1m2A>

mims

1
z§m2>, (3.1)

where C' (

11 2im;) (i = 1,2) is the spin
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state of the individual nucleon quantized along the z-axis and m; being its spin projection
on this axis. The helicity representation |qSA) results from rotating the state |zSA) into

the direction of q, which is the relative momentum of the two nucleons
|aSA) = R(q) |zSA) . (3.2)

Note that the spin projection A on the quantization axis is unchanged. Here R(q) is the

rotation operator (see Refs. [31, 32] for detailed descriptions of this operator)
R(q) = R(¢00) = e™"50e757, (3.3)

where S, S, are the z- and y-components of the total spin operator S, respectively, and
(0, ) determines the direction of q. We would like to emphasize that different from
Ref. [30], which performs a rotation through three Euler angles (o, 3,7v) = (9,0, —¢),
we perform a rotation through the angles (o, 5,7) = (¢,6,0), since the third rotation
through the angle v = —¢ is unnecessary and therefore 7y is set to be zero.

As the state |zSA) is the eigenstate of the z component S - Z of the spin operator, the
state |QSA) is the eigenstate of the helicity operator S - q

S-q|aSA) = A|aSA). (3.4)
This can be shown as follows using the relation S -q = R(q)S - zR'(q):

S-alasA) = R(a)S-zR™'(a)R(q)|2SA)
= R()S-2|2SA)
= AR(q) |2SA)
= AlaSA). (3.5)

The orthogonality and the completeness relations for this state |qSA) are similar to the

ones for the state |zSA\):

<(A]SIAI |(A]SA> — 65155/\//\ (36)

>_lasA)y(@sa| = 1, (3.7)

which can be verified as follows:
(@5'A [aSA) = (25| R™'(a)R(@) [2SA)
(zS'A" |zSA)
= Og150MA, (3.8)
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<qslAI |qSA> — Z <QS'A' |qslIAIl> <anAII |qSA>
SNAII

= Z 65151/6A1A116‘S//S§AIIA
SHAII

= 55’56A’A- (39)

We begin to construct the momentum-helicity basis state, starting with a direct

product of the momentum vector state |q) and the helicity state |qSA)

|4, aSA) = a) [aSA) . (3.10)

This is justified, since we work in a nonrelativistic scheme. In this scheme the momentum
vector state and the helicity state are independent of each other, whereas in a relativistic
scheme the two states are related (see for example Ref. [30]).

This starting state |q; @SA) has no definite parity. It is not eigenstate of the parity

operator P, which acts on the momentum vector state
Plg;SA) = |—q;aSA) . (3.11)
We define from this state a different state |q; @SA)_, which is parity eigenstate as

1
QSN = —(14+n,.P) |q;qSA) . 3.12
lq; QSA), \/5( n=P) |a; qSA) (3.12)

Here n, = £1 are the parity eigenvalues as can be checked by applying P on this state

Plq;qSA), = (P + ;) |a; @SA)

1

V2
1

—= (NP + 1) |q; qSA

1 \/5(77 ) |a; @SA)

= . |q;aSA), . (3.13)

The antisymmetric property is introduced by taking into account isospin and using
the permutation operator P, which exchanges the two nucleons’ labels, meaning that
the permutation takes place in all space: momentum, spin and isospin. In momentum

space Pjs acts as P in Eq. (3.11) whereas in spin and isospin space the actions of Py are

Py|gSA) = (=)7"7]asA) (3.14)
Pty = (=) t). (3.15)
Here |t) = |[tmy) is the total isospin state of the two nucleons, where the total isospin ¢

equals 0 for singlet and 1 for triplet isospin states and m, is the isospin projection along

its quantization axis, which tells also the total electric charge of the system. We suppress
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m, for simplicity, since electric charge is conserved. Now we define the momentum-helicity
basis state |q; QSA; )™ as

1
QSN D™ = —(1 - P, ;qSA) |t
|a@; aSA; ) ﬂ( 12) |3 ASA), [E)
_ 1 S+t |- &
- E (1 - nw(_) ) |qa qSA>7r |t> ’ (316)
and the antisymmetricity of this state is obvious
1
Py |q; qSA; )™ = —(Pip — 1) |q; qSA)_ |t
12954 ) \/5( 12 ) la; aSA), |t)
= —la;aSAt)™. (3.17)

The factor in Eq. (3.16) tells that parity, spin and isospin must meet the condition
nﬂ_(_)5+t = 1.

We evaluate now the normalization of the state given in Eq. (3.16). For this purpose
we need the relation between |qSA) and |—qSA). This relation can be derived using
the definition in Eq. (3.2) for |—qSA) and the Wigner D-function (see Refs. [31, 32] for
detailed description of the Wigner D-function)

D3ia(@) = D3a(900) = (2SN R(q) [2SA)
= (2SN |e e |zSA)
= N (zSN| e |2SA)
= N3, (0), (3.18)
together with the following relation for the d-matrices d3,,(0) (see Appendix A for the

derivation)

dyp(m—0) = (=)5TNd3,_, (0). (3.19)

We obtain
|—aSA) = R(—q)|2SA)

= S [SN) (sSN| R(-q) 451)

— ZDAIA |ZSA>

= Z e MmN S (1 — 6) |2SA)

= Ze*l PHIN (SN GS, L (0) [2SA)

= ZDAIi |ZSA>

= (=)° IqS —A). (3.20)
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Now the normalization of the states given in Eq. (3.16) can be worked out as follows:

TGS N @ aSA D™ = S (1= e (2)T) (1= ne(=)5T) G

1
2
X o (d;4'S"N'| q; qSA)_, (3.21)

with
(595N q;q5A),. = = (d;4S'N'| (1 + 0w P)(14n.P) |q; GSA)
(d5d' SN[ (1 +n-P) (|a; ASA) + 1x |—q; GSA))
(d;d'S'"N| (|a; aSA) + 1 |—q; 4SA)
+ Nyt |_q; qSA> + Ne! Nrx |q; (A]SA>)
1 )
= 3 {(1 + 001:)0(q — q)dsrsdpra

NI RN RN

+ (0w + 1:)0(d" + @) (@S"A'| —aSA)}
= ; {(1 + 1) 0(d — @) d5750nra
+ (1 + 70)3(d + @) (=) S50, }

= Oy 0505 {0(a = @)ona +1:(—)%0(q + @)y a}.  (3.22)

Thus the normalization is

T g SN | @SN )™ = (1= 0e(=)5) 646y, 051
X {(S(q’ —q)(SA/A+777T(—)55(q'+q)5A/,_A} . (323)

Next we verify the completeness relation of the state defined in Eq. (3.16). Starting
with
> /dqlq, aSA; )™ p "(aq; @SN =1, (3.24)

SArt
with p being a factor not yet defined and using the normalization given in Eq. (3.23) the

completeness relation is verified as follows:

©'a < IS Al 25|qu AllslIAIl > ''a
= AN Y [ dala;asai™p " (a;ashs o' a"s A )

SAnt

=Y. / da (1= 1(=)5%") 010y, 051 (1 = 112 (=) 571) Gy Gy D
SAwt

x {6(d' = a)da +1x(=)°5(d + a)du, a }
% {3(a— q")oanr +1e(-)%5(a + q")os, ar )

! ! 2
= (L= Y By b
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x {o(d" = a")onar + 1w (=)0 (d + q")0nr
+(a’ = a")dwar + 1 (=) ¥'6(a’ + a")onr, ar |
= 4p (1= (<)) 016y 1m0 Osr5
x {6(d' = a")oar + 1 (=)5(d + a")onr,-ar |
= 4p V(A SN | oGS A Y (3.25)
1

In the last equality we used again Eq. (3.23) and thus determine p = ;. Consequently

the completeness relation reads

1 .
/dqlq, asA; )™ 1 (q; qSA;t| = 1. (3.26)

SAnt

3.2 General Structure of the Potential Operator and
the Potential Matrix Element

As shown in Eq. (2.11) the NN potential is the input for the NN scattering calculations.
Therefore, before we continue to find the set of the LSE’s in the momentum-helicity basis
derived in the previous section we figure out first the general structure of the potential
operator, which fits well to this momentum-helicity basis and investigate the potential
matrix element in this basis.

The NN potential is invariant under the operation of rotation, parity and time-reversal.
These invariance properties exclude many terms among all possible terms assumed as
components of a NN potential (see Ref. [25] for more educative discussions). There are

six terms left [26] in which the most general structure of a NN potential can be given, as

6
i=1

Here v;(q', q,7y) are scalar (spin independent) functions, which depend on the magnitudes

of ¢, q, and the angle between the two, v = q'-q, and W; (i = 1 to 6) are operators to

the spin states of the two nucleons such that

!

Vm’ m2m51msz(q q = <qmslms2|v|qmslms2>

slm52|<q |V|q> |m51ms2>

(
= Z q q,”y slm;2|Wi|mslmsg>. (328)

=1

The W,’s are constructed as combinations of projected-spin operators along some axes,
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given in terms of momentum combinations with the exception of Wy, which is unity:

W, =1 W2:(01+0'2)-N
W, =0, -No, N W,=0,-Po,-P . (3.29)
W5201-K02-K Wﬁzo'l'f)a'Q'K+o'1'K0'2'f)
Remember that these are the same operators appearing in the expression for the M-matrix
given in Eq. (2.32). (In that equation (2.32) and the whole Chapter 2 we attached to the
Pauli matrix o the nucleon labels 1,2 as superscript for clarity.)

In terms of W;’s a NN potential is expressed in the individual spin operators S; = %O'i
(i = 1,2) of the two nucleons instead of in the total spin operator S = (o + 05). The
latter one is more appropriate to the momentum-helicity basis state given in Eq. (3.16),
since though algebraically possible, it is not practical to carry out matrix elements of the
potential given in Eq. (3.27) in the momentum-helicity basis. Therefore, it is necessary
to define a set of six operators constructed from the helicity operators S - q of which
the momentum-helicity basis state is eigenstate. Such operators have been defined in

Ref. [17]. Here we construct similar operators denoted by €2;:

lel QQZS2 Q3:S
U%=S-4S-q Qs =(S-4)*(S-q)? Q=S

ol

'S. g
4 (3.30)
S-q

o}

In order to maintain the invariance properties of the potential the €2; operators must be
linearly independent and have to be connected to the W;’s. The connection of the 2; to

the W, operators is given as

J

where the transformation matrix A = {A4;;} depends on ¢, ¢’ and v (see Appendix B).

Expressed in the €2; operators the general form of a NN potential is

6
V(d,a) = > vi(d,q,7) Ay (3.32)

i,7=1
Taking also into account the spin states of the two nucleons, which are now represented

as helicity states given in Eq. (3.2), and using Eq. (3.10) we have

Veald,a) = (d;d' SN |V]g; §SA)

= (aq'SA'I{d|V]a)|aSA)
6
= > vild, ¢ 7)Ai(d SN|Q|asA). (3.33)

1,7=1
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The matrix elements (q'SA'|€2;|qSA) are easier to evaluate, as it is intended by

defining the €2; operators, . These are

(@SN ]aSA) = (d'SA"[aSA) (3.34)
(@SN |aSA) = (§'SA'|S?|qSA)
= S(S+1) (&SN |aSA) (3.35)

(@ SA'|Q3|aSA) = (§SN|S-&'S-q |aSA)

— <(s q)2q' SN |gSA)

= A?(q'SA |aSA) (3.36)
(@SA'[QulasSA) = (d'SA|S-d'S-qlash)

= ((S-d)d'SA'|S-qlasA)

= NA(SA |aSA) (3.37)
(@SN'1Qs[aSA) = (@'SA'(S-4)*(S-a)”asA)

= ((S-d)’q'SN|(S-a)*aSA)

= A%A2(q'SA’ |gSA) (3.38)
(@'SA'[Qs|aSA) = (d'SA|S-aS-4qlasA)

= A% (¢'SA |aSA) (3.39)

All resulting expressions are simply the overlap of the helicity states defined in Eq. (3.2)
multiplied with a factor, which is just a number. Using Eq. (3.18) and that d , () being
a real number this overlap (q'SA’ |@SA) is

(SN |qSA) = Z(“’SA’ |zSM) (zSM |qSA)

= ZDMN (¢'6'0) Dy (¢00)
S

= > eMIIGE () da (0). (3.40)
M=-S

For q points in z-direction d3;,(0) = 64 and this overlap becomes simple
(@SN |zSA) = eds, (6). (3.41)

We evaluate now the matrix elements of the potential V' in the momentum-helicity
basis firstly without applying the general structure of the potential given in Eq. (3.32).
We assume that parity, spin and thus isospin are conserved (which is valid to a high degree

of accuracy) and restrict ourselves to evaluate only

VIR, @) = (d; &SNV [q; gSA; 1™ (3.42)
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Using Eq. (3.16) and the parity invariance of V' we obtain for these matrix elements

2 1, ~1 ! ~
(1= e (=)"*) (1] o (s SN[V |a; GSA),, 1)

(1= e (=)") (2 (s &'SA| + me (—as & SN V | @A), 1)

NN

Vid(d,q) =

Sl =Sl

(1= me(=)"") (¢ (s &S| V |a; 4SA),
+ 7x (=d5 &' SA'|V |q; @SA), ) [t)

= L S+t 1. AT Q! A
= 5 (1w ) (s SNV fas 4SA),
+ 1 (=3 &SN PV P g aSA) ) 1)
= V2 (1= m(2)H) (@SN (@] [a), [aSA) 1), (3.43)

where
=—(q) +n:|— 3.44
@) - f (la) +nr [—a)) - (3.44)
Similarly we could also have gotten
ViR(dsa) = V2 (1 - ne(=)%) @SN (| V |a) [aSA) ey . (3.45)

Using Eq. (3.43) together with Eqgs. (3.20) and (3.44) we can connect V™%, (q',q) to
ViR (—d’,q) as

V(@) = V2 (1= (=)) ¢S — NV |a), |[aSA) [t)

= V2 (1 - m(—)s”) {t (=) (—=d'SN'[{d| V |a), [aSA) [1)

= V21— n:(=)"") ) (=) (~a'SA (| PV Pa), [aSA) 1)

= V2 (1 - m(—)s“) e (=) (1 (=’ SN {(—=d'| V |a),. |aSA) |t)

= 0:(=)°ViR(—d, q). (3.46)

In the same way we find

Vita(d,a) = ne(=)°Vi(d, —a) (3.47)
VY adsa) = Vi(-d,—q). (3.48)

Equations (3.46), (3.47) and (3.48) are denoted as the symmetry relations of the potential
matrix element in the momentum-helicity basis.
Inserting now the general structure of the potential given in Eq. (3.32) into Eq. (3.43)

we obtain

Vi a) = (1=n(=)") (| {La/' SN (| V |a) |aSA)
+ 0o (@SN V |—a) [aSA)} |1)
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= (1= ne(=)"™) (¢t {@' SN[V |a) |aSA)
+ (=) (@SN (| V [—a) [-aS — A) } [t)
6
= (1= m()") X Ay{uld 0. @SN 9 1as)
2,j=1
(=)0 0, =) (@SN 9 |48 = )} (3.49)
As an example, we work out in the following the €24 term of the potential matrix element
denoted as V73(q, q)a,:
6
ViR Dlo, = (1= (01 S Au{ (' 0,) (@SN aSA)
i=1
(=)l 0, =) (@SN| 2 |=aS = )}
6
= (1= (™) E Aufuld 07 @SN]S a8 - alasn)
i=1

1 (=) 0i(d s ¢, =) (@' SN|S-&'S - (—q) |-aS — A)}
= (1-m(- S“)ZA {XAu(d'0.) @SN las)
— N A (=) 0i(d' 0, =) (@S [-4S — A>}

6
= (1 - 7771_(_)5+t) A,A Z Ai4 {vi (qla q, 7) - nﬂvi(qla q, _7)} <qlsA/ |é]_SA>

=1

- (1 — 777r(_)5+t) NN Au{vild, 4,7) — nwvild's ¢, =)}

i=1
X Z RGN CATGIN R (3.50)
In the derivation we used Egs. (3.37), (3.20) and (3.40).

We would like to exhibit the angular behavior of the potential matrix elements given

in Eq. (3.49). The scalar functions v;(¢’, ¢,y) as well as A;; depend on v, where
v=q -q=cost cosf + sin sin b cos(¢ — ). (3.51)

Therefore, their azimuthal dependence is determined by cos(¢’ — ¢). The matrix elements
(a'SA'|Q;1qSA) depend on the azimuthal angles ¢' and ¢ as shown in Eq. (3.40). Thus

the azimuthal dependence of the potential matrix elements can be described as
V/{r’,/s\t( ) VTrSt { ZM(¢’7¢)7 COS(QS, — ¢)} . (352)

For the special case q = z the azimuthal dependence is only in the matrix elements

(a'SA'|€2;1qSA) as given in Eq. (3.41). Hence, the potential matrix elements reduce to
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the simpler form
ViR(d',qz) = VIR 0, 0). (3.53)

3.3 Lippmann-Schwinger Equation

In this section we formulate the LSE for the T-matrix in momentum-helicity basis. Similar
to the potential matrix element given in Eq. (3.42) the T-matrix element in momentum-

helicity basis is defined as
Tid, ) =™ (d; &' SNt T |q; aSA; )™ . (3.54)

It is obvious that the symmetry relations given in Eqs. (3.46)-(3.48) for the potential
matrix element as well as the expressions in Eqs. (3.43) and (3.45) apply also to the
T-matrix element given in Eq. (3.54), since these equations result from the nature of the
momentum-helicity basis and the invariance properties of the NN potential, which indeed

are also possessed by the T-matrix:

I @) = V2 (1—n(=)"") (@ SNHAIT [a), [aSAY 1) (3.55)
T @) = V2 (1—n(=)"") (@SN (| Tla) [aSAY 1) (3.56)
™5 \(dq) = n:(=)°TiN(—d, q) (3.57)
TAda) = ne(=)°TRY(d, —aq) (3.58)
73 _a(da) = TiY(-d, —q). (3.59)

Recalling first the LSE given in Eq. (2.7), then using the completeness relation Eq. (3.26)
and the definitions in Eq. (3.54) for the T-matrix element and in Eq. (3.42) for the
potential matrix element, the LSE for the T-matrix element in momentum-helicity basis

takes the following form of an integral equation

T (d,q) = Vidi(d,q) + - Z / dq" Vi (d',d")G§ (E) Tk (d", q), (3.60)
AN

where E, and G{(F,) are given in Eq. (2.12). As mentioned there are two total-spin
states of the two nucleons, i.e. singlet (S = 0) and triplet (S = 1) states. For the singlet
case the LSE in Eq. (3.60) is one equation

1
T (da) = Vi (ds @) + 5 / dq" Vi (d', d") G (E) Ty (4", a).- (3.61)
For the triplet case there are 3 coupled equations to each initial helicity A = —1,0, 1:

1
Ti'dha) = Vii'(d,a) + / do" {Vi"(d, a")G§ (B) T (", @)
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+ Vi (d\a )G (BT q",q) + Vit (o, a") G (B) T (a" ) }
T'da) = ViX'(d,a)+ / dq" {Vi'(d, a")G§ (B) T (A", a)
+ Vi (d, a") G (BTN, a) + Vi (o, a") Gy (E) T (", a) |
T a) = VA )+ [ dd (Ve )G ()T (o a)
+ V7li(d, d") Gy (BTN, @) + V7L (o, d) G ()T (d", a) -
(3.62)

This coupled set of equations in Eq. (3.62) can be reduced by means of the symmetry
properties of the potential and T-matrix elements.
Equations (3.47) and (3.57) change the integral term with A” = —1 in Eq. (3.60) as

/ dq"Vi*t (o, q") G (E) T (4", q)
= [ dd"ne (=) Vi, ~a")GE (B ()T (", @)
—/dq" 7r5t )G+( )Tﬂit(_q”aCI)
— / dq" Vil (d, ") GE (BTG, ). (3.63)
Thus it can be combined with the integral term with A” = 1. This leads to
Ti(d,a) = Vii(d / dq" Vii'(d, d")Gg (E)TTy' (4", a)
/ da" Vg (d',a")Gy (B T5y'(a",a).  (3.64)

Hence, for the case S = 1 one needs only two instead of three coupled equations for
A" =1,0 for each A. In addition Eqgs. (3.47) and (3.58) allow us to consider only A = 1, 0.

At this point we would like to summarize that for each isospin (singlet or triplet) the
set, of the LSE’s consists of five equations, i.e. one uncoupled equation for S = 0 and two
sets (A = 1,0) of two coupled equations (A’ =1,0) for S = 1. In contrast to the standard
partial wave technique the number of the LSE’s to be solved is fixed regardless the energy
involved in the process. There are 10 equations for np scattering and 5 equations for pp
scattering.

The LSE given in Eq. (3.64) is a set of three-dimensional integral equations. This
reduced LSE is still subject to further reduction, which makes use of the azimuthal
behavior of the potential matrix elements emphasized in the end of the preceeding section
(Egs. (3.52) and (3.53)).

We begin by assuming that the azimuthal behavior of the potential matrix elements

Egs. (3.52) and (3.53) are carried over to the T-matrix elements. This is reasonable as
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can be seen in the infinite series of the LSE in V'
T=V+VG)V +VG VGV + ... (3.65)

The propagator GGy has no angular dependence. Thus we make an ansatz for the solution
of the LSE given in Eq. (3.60) with q = z as

TN qz) = e TN q,0). (3.66)

We insert this into the right side of Eq. (3.60) together with Eqgs. (3.52) and (3.53) to

obtain

T, q2) = VI 0. 0)
4= Z/d " [{r,iel zM(¢’—¢”),COS(¢1_¢//),q/,q//}
AII

XG+( ) ZA¢,,TK:§K((]” q, 9//)
— qu5 V/@it(q q) _|_ ezAgb Z/ dq// //2/ dCOS@”/ d¢”

AN
XV {0 cos(¢ — ¢"),d q"}
XG[—)I—( ) iA(P" — ¢,)T/7\TI$K((]",(],9"). (3.67)

With respect to ¢” the integrand is periodical with the period being 2. Thus we can set
¢' = 0 just for the ¢"-integration and get

T (d,qz) = ¢ [VA”fitq ¢,0') + Z / dq" ¢" / dcos " / dg"

AII
X V[(’f\e’ { _lM¢”7 COs ¢”7 qla q"} GS—( ) ZAd) TK"?[{ (q 4, 0,’)]
= MTTHG,q,0). (3.68)

This verifies the correctness of the ansatz in Eq. (3.66).
Now we return to Eq. (3.67) and remove the factor ¢*?" on both sides of the equation.
This leads to

T (d,q.0) = Vi(d,q.0) + Z / dq" ¢" / dcosf" / d¢"
AN

x e MO=ONYESL (o, q") G (By)Thia(d", q.0"), (3.69)

where we restored the original notation V{3 (q',q") for the potential matrix elements in
the integral kernel. This is a LSE for the two-dimensional T-matrix 77 (¢’, q,0'). The
solution of this equation has no azimuthal dependence and hence the ¢”-integration can

be carried out independently. Defining

00 = [ OV ), (3.70)
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we can write the LSE for the two-dimensional T-matrix as
Tj\r’%(qlv q, 9,) = V/(’it (qla q, 9,)
1 00 1
+7 Z/O dq"q" / 1 dcos0"vT it (q', q", 0, 0" G (E)TE L (¢, q,0").
AH -
(3.71)
Note that in evaluating the integral in Eq. (3.70) we again set ¢' = 0 as explained in the
context of Eq. (3.68). The driving term of this equation is a special case of Eq. (3.70) for
¢"=q 0" =¢"=0and A" = A up to a factor (27)7",

vt (¢ q,0,0) = /0 e MVES s 0d) = 27VESHd 0,0, (3.72)
Inserting all these results into Eqgs. (3.61) and (3.64) gives
TR'(d\a.0) = Vi'(d.q,0)
+i /OOO dq" ¢"* /11 dcos 0" vy’ (¢, ¢", 0, 0" G (B)TE(q", q,0")
T (¢, q,0) = ViN(d,q,0)
7 [ st N 00 BT,

1 00 1 x .
_|_Z /0 dqll q112 /_1 dCOS 0!/ ,UA,l(I)f,A(ql, qll, 9/) QII)GE)F(Eq)ToAU(q”, q, 9//).
(3.73)

This is the final form of the set of the LSE’s for NN scattering in the momentum-helicity

basis.

3.4 Connection to the Physical T-Matrix Repre-

sentation

In the preceding section we have derived the set of the LSE’s Eq. (3.73) for the
T-matrix. The T-matrix elements resulting from that equation are in the momentum-
helicity basis and therefore not directly appropriate for calculating observables, which are
then compared to experimental data. We need the T-matrix elements with respect to the
states given as

1
|I/1V2m1m2q>a = —(]_ — P12) |1/11/2m1m2q> y (374)

V2

where vy, 5 and my, my are the magnetic isospin and spin quantum numbers, respectively.

The T-matrix elements in these states are then given as

1
a<1/1V2m,1m,2q’|T|V1V2m1m2q>a = 5 <l/11/2m’1m,2q’| (1 — P12)T(]_ — Plg) |1/11/2m1m2q>

= <l/11/2m,1m’2q’|T(1 - P12)|1/1V2m1m2q>, (375)
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which we refer to as the physical T-matrix elements. For example, the spin-averaged NN
differential cross section is calculated as

do

m\? 1 .
Yol (2m)* <—> = Y a(riremimyed | T rivamimaq)a . (3.76)

2) 4

i !
mimymimsz

Thus a connection between the physical T-matrix elements and the T-matrix elements in
the momentum-helicity basis is required, especially the one with q = z.

The physical T-matrix elements given in Eq. (3.75) have to be expressed in terms of
TrH(d', q) by inserting into that equation the completeness relation given in Eq. (3.26)
twice. Thus we need the overlap of the momentum-helicity basis state with the state

|v1vemimaq),. This is done in the following:

" q' SNt [riymimaq),

1 A1 I
= 5 (1 - 777r(—)5+t) <t|7r (q’; qSA | (1 - P12) |V1V2m1m2CI>

= 505 (L= 1) ¢l (] + e ('] @S
X ([rivamimaq) — [vevimemy — q))
= = (1= (%) (] + e ()
x ((t [rive) (@'SA' [mims) (@) — (t [vorn) (@' SA [mama) |—q))
= 55 (1= (=1 ) {3(a = @) (¢ Jrm) (@A )
—d(d' +a) (t [vor1) (@'SA" [mamu) + 1:6(d" + ) (t [v1ve) (@'SA' [mims)
— 1x0(q’ — ) (¢ |var1) (@'SA" [memy)}. (3.77)

[\

With the overlap (q'SA’ |myms) being
11
<é]_,SA’ |m1m2> = ZC <§§S';m1m2A0> <é]_,SA’ |iS,A0>
Sl

11 N
= Z C <§§SI, m1m2A0> Di;A/(ql)(SSS/
S/
11

= C <§§S, m1m2A0> €iAO¢,diOA/(91), (378)

Eq. (3.77) can be evaluated to give

" q SNt Jvivemimaq),
11

1 11 i / /
= ﬁ (]‘ - 7771'(_)5+t> C <§§t, l/ll/2> C <5557 m1m2A0> e AO¢ diOA/(e )
x {o(d' —a) = 3(q + @) (=) + n:0(dq + ) — ne0(d — a@)(—)¥F}

1 11 11
T 22 1_ " _S+t <__ - > <__ ‘ A>
2\/5( N (=) )C’ 2215,1/11/2 C 22S,m1m2 0
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xe ™ dy L (0) (1= 12(=)5) {0(d’ — @) + ne0(d’ + @)}

1 11 11
= ﬁ (1 — nﬂ(—)s+t) C (2 2t 1/11/2> C (2 25 m1m2A0>
xe?dl (0 {6(d — ) +1.6(d + @)} (3.79)

where the following relation for the Clebsch-Gordan coefficient has been used
C (J2jrj; memim) = (_)j1+j2_j0 (J1J2g; maimam) . (3.80)

Note that if necessary we write the Clebsh-Gordan coefficient as C (j271; mom,) without
explicitly show the total magnetic quantum number m = my + my. For example, in the
last equation we have written C' ( =t; 1/11/2) instead of C' ( Sty (v + 1/2)>

Having the overlap of the momentum-helicity basis state with the state |v1vomimeq),
as given in Eq. (3.79) we derive the expression for the physical T-matrix elements in terms

of the T-matrix elements in the momentum-helicity basis as

a <I/1V2m,1m’2ql| T [1hvamimaq),
1 x
— <—> Z /dqa viveomimyq' |q”; ¢ SN )™

SA'mtA
% /dq/// Ta q//_ A//SA/_ t| T |q///; q///SA; t>7ra Ta <q///; qIIISA; ¢ |l/11/2m1m2q>a
1

(1) X [fa" [ da it a0

SAN'wtA
st (M NN\Ta n., ~m .
x T (@”, o)™ (q"; " SA; t [vivamimaq),

1 11 11
— <_> Z /dqll/dqlll 1 . ,',]W(_)S-i-t) C <§§t, 7/1V2> C (2 25 m1m2Al>

SA'm
xe M d3,  (07) {0(a" — o) + ne0(a” + d)} TR (9", 9")
1 sy (11 1,
Xﬁ (1 — 7’]71—(—) ) C (Eit, 1/11/2> C (555, m1m2A0>

XeiA0¢”’di A(Q”’) {5(q/// . q) + nﬂ(s(q/// + q)}

11 2
< > /dq"/dq’" . )S—i—t)c (——t 1/11/2>
SA'mtA 22

11
xC ( > Simim ;Ag> C (225 m1m2A0>
Xe—zA’ @ digA' (gll)ei/\0¢m diOA(HW)TK&t( : qm)
x{0(q" —d') + WS (" +d)}{o(q" —a) +n:(qd" +q)}
1\2 11

11 11
_ S+t . /
= <Z> > (1 — 7= (—) )C <§§t, V1V2> C <2 S;mimiyAg ) C <2 25 m1m2A0>

SAN'wtA
x {795, (0)e 03, (O)TT ()
e — )N (- OTT(—d, —a)
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+nre” N dT, ()R (- 0) TR (d, —a)
+ e MG, | (= 0)e 0% L (TR (—d ) }
1)2 ; 11 2 11 11
(3} S (1m0 C (——t; 1/11/2> C (——S;m;mgA’0> C <——S;m1m2A0>
<4 SA’ntA( )¢ (33 22 22
xe Mo\ (0)e o d5 L (0)
x AT A, ) + e7 o (=) Thoethom () St (—gf —q)
€M7 (<) ST (], —q) + e 0T (<) ST (—d q) )
1)2 ; 11 2 11 11
=(=) > (1-m(=)"")C (——t; 1/11/2> C <——S;m'1m'2A6> C <——S;m1m2A0>
<4 SA,M( )¢ (33 22 22
<e N 05, (0605, 0)
AT, @) + T \(~d, —q)
+ (=) TE A (A, =) + e (=) TZ A (—d s @)

1 11 2
= —emithd —hod) (1 — nﬁ(—)s”) C (——t; l/1l/2>
4 Snt 22
11 11
xC <§§S5 m3m5A5> ¢ (555; m1m2A0> S A (0)d3 A (O T (dq).  (3.81)
A'A

We have used the T-matrix properties given in Eqs. (3.57) - (3.59) and the relation for
the d-matrices given in Eq. (3.19) to arrive to this result.
Next using Eq. (3.66) and d3 ,(0) = dy,a we get the expression for the physical

T-matrix elements with ¢ = z in terms of T (¢, ¢,¢') given in Eq. (3.73) as

1 _oar / 11 2
o (Mramimyqd'| T [ivemimegz), = Ze_l(AO_AO)"S > (1 — nﬁ(—)SH) C (5515; 1/11/2>
Snt

1., 11
xC (555, m1m2A0> C (555’, m1m2A0>

X Y dyn (0T, (4,4,6"), (3.82)
AI

where in addition we have set ¢’ = ¢, since observables are measured on-shell.

3.5 Connection to the Standard Partial Wave Re-

presentation

After developing a new technique to treat NN scattering it is natural to test and to
compare it to the well established, standard partial wave decomposition. Though we can
compare our calculations directly to experimental data, it is also interesting to have a

comparison on this level. Besides there are not always experimental data available to
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compare with. Therefore, we make a connection to the standard partial wave repre-
sentation. For simplicity we set ¢' = ¢ from the beginning.

The well known on-shell partial wave projected T-matrix element is defined as
7" (q) = (qg(U'S)jmt| T |q(LS)jmt) (3.83)

where [ and [' are the initial and final angular momenta, respectively, and j is the total
angular momentum (J = L + S). For simplicity we have suppressed the isospin projection
m, along its quantization axis (see the text following Eq. (3.15)). The states |¢(LS)jmt),

which are called the partial wave basis, are given as

|q(1S)jmt) = Xﬂ: C(1Sj, p,m — ) lglp) [Sm — p) |t) (3.84)
with the standard normalization
(g (I'S")j'm't" |q(1S)jmt) = W{S”(nggéjfjémfmét/t. (3.85)
The states fulfill the completeness relation
> [ dag?las)imt) (q(1S)jmt] = 1. (3.86)

jlSmt

The idea is to express the partial wave projected T-matrix element T};/*(g) given in
Eq. (3.83) in terms of the T-matrix elements 773 (q, q,0'). Then we can compare phase
shifts calculated using these partial wave projected T-matrix elements to those resulting
from the standard partial wave calculations. Performing a connection the opposite way is
difficult, since in obtaining T75! (¢, ¢, 0') from T;;7*(¢) we need ideally an infinite number of
partial waves. Nevertheless we work out both expressions. The first one is the expression
for T75(q, ¢,0") in terms of T};7*(q). Using Eq. (3.82) this expression can be verified, since
the physical T-matrix elements in the partial wave representation is well known. The
second expression is that for 7,77 (¢) in terms of TF5 (¢, ¢, 0"), which will be derived from
the first expression.

To get the first expression we insert the completeness relation given in Eq. (3.86) twice
into Eq. (3.54). It turns out that the overlap (¢'(1S")jm |q; @SA) need to be worked out
first. Using Eqs. (3.18) and (3.84) together with the following projection

wwmzﬁ%?MM@zﬁiﬂg@ (3.87)

/

this gives

(¢ (1S")jm |a;aSA)y = > C(Sj;p,m — p) (¢l |a) (S'm — p |@SA)
I

, - 0(q = @)/ 2
= ZC(ZSJ;u,m—M)%YW(q)
o

X dgrge”m=moqS  (h). (3.88)

m—u,A
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Now we derive the expression for the on-shell T-matrix 775! (¢q’, q) in the momentum-

helicity basis in terms of the partial wave projected T-matrix Tj/"(¢). We obtain

T (qd, q)

T qd; SN T |q; S A; )™
(1= (%) (1] (0 &/SA'| T s @SA), [1)
L= ne(=)"™) (t] = (q&; &' SN| T |q; @SA),, |t)

L= (=) > > / dg" ”2/ dq ¢

lllSIlmltll ]lslmtl

(t| = (qa; d'SA" |¢"(I'S")'m/t")y (¢"(I'S")§'m't"| T'|¢' (1S") jmit")
(¢'(Ls’ )Jmt | q; @SA)_Jt)
(1= 0e(=)**) X (a(U'S)jmt| T |q(15)jmt)

I'ljm

" {Z CI'Sg; iy m — i)Yo ()07 d5 i (6)

w

A~ /N~

X

N =X

w

+ 11w 3 C(U'Sgis o'y m = ) Yo (=& )09 5, A,(9'>}
A S S m =i 2,00
+ e 3 C(IS]; pm — p) Yy (—@)e™ " =12d5 M,A(f))}
w

3 (1= 0% S L7 (1)) (14 ()

U'ljm
x Y C(I'Sjs ' ym — )Yy (&)™ ds i (6)
w
X ZC LS pym — )Yy (@)e ™" %dy L (6), (3.89)

where in the last equality we have used the relation Y,(—7) = (=)'Y},,(#'). Inserting

q=2zand d;_, \(0) = 6,m-n into Eq. (3.89) this gives

T (g4, q2)

% (1=n(=)%") X T70) (1+0a(2)") (1 +1:(-))

U'ljm
X ZC([’S]}MI,m—MI)YE, (q/)el(m v ¢’d1§1 w, A’(el)
u
xC(1Sj;m — A, A)YY, lm— A(2)

1 20+1

5 (1= (") ST a) (140 (2)") (L4 1)) ) =

2
Uiy
X 3OS ', A= )Y (@)e" 07 ag_, (0)C(1S5;0,A). (3.90)

w



3.5 Connection to the Standard Partial Wave Representation 37

W1, AL gy
=/ + Dl (¢19'0) + (=)¥ DY, o(69/0), (3.91)

m(0) = (=)™ (3.92)

—m/ m

Using the relations

(see Appendix A for the derivation of Eq. (3.92)) and an addition theorem for D-functions
DillmlDuz my Z C(j1i2J; papr2)C (J127; mlm?)D{t1+u2,m1+m27 (3.93)

it is straightforward to show that

Yo (@)e' a3, 0 (8)
2l, + 1 A— AIDlI

- A7 ) “wo(@'0'0)e d A)d)ld' A (0)

WHl, v .

LD (00D (090)

21" +1 A=A’ rQ: 1o !

= L S O =t~ MCWS0.~N) D (600)
J

2l,+1 ! . ! ) n/

= . ZC U'Sj; ', A — " )C(I'S7;0A") DY\ (¢'6'0), (3.94)

where in the last step we have applied
C(gigags; mumamg) = (=) 7RC(f1 jogs; —ma, —ma, —ms) (3.95)

and Eq. (3.92). Thus

T3 a2) = 5 (1 () ") ST ) (14 0 (0)) (L4 )
g

2l’+1

ZC’ZS] ', A — ZClS] w, A —p)C('S5"; 0A)

J

241 e .
x| DAL ($00)C (1530, 4)

= L) @ (14 () (14 e

2 Il

200+ 1 . 2 1
/2 L ows g onypis ooy 2 L e as 0, )
47 47

= 5 (1= m ™) ST @ (L)) (1))

Il

200+ 1 , 20+1 A
i/ 4: c(z'SJ;0A')dﬂAA,(9'),/%C(sz;o,A)eM. (3.96)
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Finally, using Eq. (3.66) we obtain the expression for T75(¢, ¢,0") in terms of T;;7'(q) as

L= =) ST @) (14 me()) (14 (=)

2 'y

0 +1 | A+ 1
x| l4+ O(l’Sj;OA’)d‘Z\A,(H’)\/%C(ZSj;OA). (3.97)
T T

Now we perform a test to this expression. We insert this equation into the physical

TK’%(Q: q7 0,) =

T-matrix elements Eq. (3.82) with the aim to get the partial wave representation for the

physical T-matrix elements.

o (Mromimiyqd’| T |vivamimagz),

1 _. 11 2
_ = —i(Ay—Ao)¢ - _\S+t -
= ¢ SZM (1 N (=) )C’ <22t 1/11/2>
1., 11
xC <—§S,m m A0>O<22S m1m2A0>

L (1—nﬁ V) S 1 (@) (14 0e(2)") (1 +7(-))

'l

/2z'+1 NPT
X i C(lS OA)dAOA’(Q) ?C(ZS],OAO)

_ 1 i(A)—Ao) d’,ZC(llt )2
N 4i7r\/_mq 99" 12
xC ( =5 m1m2A'> C (; g, m1m2A0>
x 30 (1= ()5 (1= (=)) (00— Spf*(9)) V21 + 1C(1S5; 0A)

'y

2l’+1

ZdA, M (0 (0)C (1S5 00)

1 11 11 o 11
= m%}c(zzt ) C<2 85 mamy °>O<2 5 mlm2A°>
> Z ( z/+5+t> (1 . (_)l+S+t) (6” . Si?'l]'t(q)> I+ 1 1C(1S; 0A,)
U5
20 + 1
47

= ZO(llt )2(1(“5 ’A’)C(lls- A)
_4z7r\/_mq 22"112) © 23 TP

<3 ( l+S+t) (1 B (_)l+s+t) (5” _ Sl*,gijt(q)) V21 4 1C(1S5;0A)

Uiy

2l’+1

ZDiw(¢'0'0>Di*;Af(¢'9’0>0(l'5j; 0A)

Z D v (¢'0'0) Y- D (¢'0'0) DY, 1/ (¢'0°0)C (IS5, Ag — n)

n

11 11 11
Q. ! IAI A
427r\/_mq ZC (2 2t V1V2> ¢ <2 25,m1m2 0) ¢ <2 S5 mums 0)
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) (1 ) S VA ICS 0

Uiy
2+ 1
AT

DiG; o $'0'0)C (IS5 Ao — Aj, Ay). (3.98)
Here S[,qut(q) is the partial wave projected S-matrix related to Tl‘,gljt(q) as
Sit'(q) = 6w — inmg Ty (q). (3.99)
In the last two steps of Eq. (3.98) we have used the relation
D (8'0°0)C(1'S ;5 0A) ZD (¢'0'0) D3>, A (#'0°0)C(I'Sjsn, Ag — ) (3.100)
and an orthonormality relation of D-functions
%: D3y (¢'0°0) D5, 4 (¢0°0) = Gy ngn- (3.101)

Using Eq. (3.91) we end up with the standard form of the physical T-matrix elements in

the partial wave representation

a (ylygm’lm;q(i'| T |V1V2m1m2qi>a
111 11 11 11
= 1T 2O <22t Wz) c (225 m!m ;Ag> C (225 m1m2A0>
St

x 30 (1= ()5 (1= (=)*) (00— Spi*(q)) V20 + 1C(1S5; 0A,)

Iy

XC(ZISJ, A[) A{), Al )Yil Ao—A) (9 Qb) (3102)

This verifies the expression given in Eq. (3.97).

We work out the reversal expression of Eq. (3.97), which is accomplished in the
following way: we perform on the left side of Eq. (3.97) some algebra the effects of which
remove all factors and terms on the right side but the partial wave projected T-matrix
T;7"(q). First we make use of the orthogonality relation for the d-matrices

2

1 . .
71 72 — A .
[1 dcosf dly, (0)d22,(0) = ST 153132-

(3.103)

Applying this relation to Eq. (3.97) cancels the summation over j and removes the

d-matrices
1 ,
/_1 dcos® d’ ()T (q,q,0")

= L= ST ) (14 00 (1)

Iy

W11 2 |
4: C(l’Sj;OA’)\/%C(lSJ 0A) / deost dL (8, (8)
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_ ﬁ (1—% 5+t)21}§l]t (1-1-%( )! )(l—l—nﬁ(—)l)

"l

V20U + 120+ 1
25" +1

C(I'Sj';0A)C/(1S]'; OA). (3.104)

Next we eliminate the Clebsch-Gordan coefficients and at the same time cancel the double

summations over [ and I’ by means of the orthogonality relation

> C(jrjzg; ma,m — mi)C(jij2g"; ma, m — my) = 6 (3.105)

mi

together with another relation for the Clebsch-Gordan coefficients, namely

27 +1\2

C(j1J29; mamem) = (—)jﬁm2 - C(J27J1; —me, mmy), (3.106)
251 +1

as can be verified in the following algebra

S (7S5 0M)C(IS s OA/ dcost di (0T g, q,6)

A'A
1 )s st y N V20 +1V20+1
= (1 - (- +t>%:T 7 (@) (14 1e(=)") (14 0e(-)") T
x Y C(I'S5'; 0N CO(I'S 5" 0A)C(IS5'; 0A)C(1S5'; 0A)
AA
1 )s st . N V20 + 120+ 1
= 4 (= m ™) XL @) (14 0e()) (L (0)) =557

2% +1\* 2 +1\* .
- Cslll__AlAl II'—AIAI
X%:<2z'+1> (ST )<25'+1 CS7E—AA)

27" +1 2 7 2j'+1 : v
7 . .
sz:<2l 1) C(Sj'l; —AN) <2l 1) C(Sj'l; —AN)

= (1= (=) T () (1 + e (=)") (14 ma(=)")
VI +1V2I+1 (25 +1)?
25" +1 U +1)(20+1)
= ﬁ (1= 725 (T4 me (") (14 ma(=)")
2'+1 s
VoI +1v2li+1 "

(9)- (3.107)

Replacing j/, [ and I' with j, [ and I’ respectively for better notations this gives the final

expression

TV + IV + 1
2 2j+1

x 3 C(I'Sj; 0A')C(1S5; 0A) / deos0'dl (0T, 0, 0).  (3.108)

AA

T,;7'q) =
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We took into account that parity, total spin and isospin are constrained by 7, (=)™ = —1
and the orbital angular momenta [ and I’ by n.(=)" = (=)' = 1.

Once the partial wave projected T-matrix elements are calculated, we can connect
them to the partial wave projected S-matrix elements using the relation given in Eq. (3.99).
The partial wave projected S-matrix elements are parameterized by the standard partial
wave phase shifts [33, 34]. Thus we can calculate phase shifts and compare them with

those resulting from the standard partial wave calculations.
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Chapter 4

APPLICATION TO NN
SCATTERING

In the last chapter we formulated a three-dimensional (3D) approach to calculate NN
scattering without employing partial wave (PW) decomposition. The practical application
of this formulation includes solving the set of LSE’s given in Eq. (3.73) for the T-matrix
elements 775! (¢, ¢, 6'). Then we calculate observables, which we compare to experimental
data. To check the new 3D formulation for correctness, it is also important to perform a
comparison with the standard PW calculations. Here we show results of our calculations

and refer to Appendix E for the numerical realization.

For this application we first need to choose NN potential models. These provide the
input to the LSE’s given in Eq. (3.73), when expressed in the appropriate form. Before
showing results of our calculations, we present our choice of NN potentials and show the
transformation from the original expressions to the ones indicated by Eq. (3.32). The

final expressions can be found in Appendices C and D.

4.1 The NN Potentials

Any NN potential given in operator form can be used for the 3D technique formu-
lated in Chapter 3. We choose two modern realistic NN potentials, each representing a
distinct category, namely the one-boson-exchange potential (OBEP) derived from a meson
theoretical approach and a phenomenological potential based on the quantum mechanical
symmetries of the NN system and the pion exchange. These types of NN potentials are
well developed and have been used in few-body nuclear physics for several decades, in the

sense that these models give very good quantitative results.

43
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4.1.1 One-Boson-Exchange Potential

Conventionally an OBEP is worked out in the framework of quantum field theory, de-
rived from the Bethe-Salpeter equation, and approximated to a purely spatial form by
means of, e.q., the Blankenbecler-Sugar reduction (see Ref. [35, 21]). These potentials
can be traced back to Yukawa’s suggestion [36] in 1935 that two nucleons interact by ex-
changing a mediating particle called meson, and supported by the discoveries of m meson
(pion) and other heavier mesons. The OBEP’s are based on meson-exchanges of pseu-
doscalar, scalar and vector types, contributing to different parts of the nuclear force. For
example, the pseudoscalar mesons contribute to the tensor force. In addition, as
suggested by Taketani, Nakamura and Sasaki [37] the nuclear force is divided into three
parts corresponding to the long, attractive intermediate and repulsive short range inter-
actions. Hence mesons of different masses are included, since the range of the force can
be related to the meson mass. For this purpose, fictitious mesons of mass between 400
- 800 MeV such as o in Ref.[35] and € in Ref.[38] may be employed to represent the
intermediate range attraction. Multiple-meson exchanges between two nucleons are also
taken into account [6, 35]. Fortunately, for practical purposes the one-boson-exchange is
a qualitatively and quantitatively approximation for the NN force. The parameters of an
OBEP are the meson-nucleon coupling constants and the cutoffs, occuring in strong form
factors, representing the finite size of the nucleon. The coupling constants are usually
extracted from meson decay (see Ref. [39] and http://pdg.lbl.gov/) and the cutoffs are
fixed to the NN data. In case of the fictitious mesons the masses are also adjusted. A
review on the OBEP’s is given in Ref. [21].

Among the best OBEP’s are the Nijmegen I and II [38] and the CD-Bonn [40] po-
tentials, which are charge-dependent and thus distinguish between pp, nn and np inter-
actions. These potentials are fitted to np as well as pp data below 350 MeV laboratory
energy with y?/datum ~ 1. This energy is already above the pion production threshold
(=~ 286 MeV laboratory energy). To achieve this close-to-unity x?/datum the parame-
terization is made for each partial wave. Hence, despite their sophiscations these potentials

cannot be used in the 3D technique.

We choose an OBEP given as tree-level Feynman diagrams and thus a simultane-
ous parameterization of all partial waves, the Bonn OBEP [35] in the parameterizing of
Bonn-B [21]. This potential is well fitted to np data for both 2N total isospin singlet and
triplet up to about 325 MeV laboratory energy, in which only the o-meson mass is different
for each isospin. Being fitted only to np data the potential assumes a charge-independent

NN interaction.
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The Bonn OBEP has the form

Vid,q) =V"(d,q) +V*d,q) +V"(d,q), (4.1)

where the labels ps, s, v stand for pseudoscalar, scalar and vector, respectively, corres-
ponding to the type of the exchanged mesons. These pseudoscalar, scalar and vector

potentials operators are given as

VP (q,q) = g”s \/7 \/7 (—d')7° u(—aq) é%%;f%s (4.2)
Vid,q) = — 4 \/:,\/:ﬂ(q’)U(q)ﬂ(—q')U(—q) (552[_((3;);2)23 (4.3)
Vi(d,q) = (q_q m2 \/7\/7( (@) w(a)u(—d)v.u(—a)

+45 {4 ald )y u(@)a(—d')yuu(—a)

—2ma(q )y u(@)u(—d)(E' = E) (g — 77") + (02 + ph) uJu(—q)
—2mu(q)[(E' — E)(¢™ — v"7°) + (p1 + P u(q)u(—q")y,u(—q)
+u(q)[(E' = E) (g —+"7°) + (p1 + p1)"]u(q)

x 1(~q)[(B' — E) (g} — 7%7°) + (p2 + ph)uJu(—a) }

= dmu(d)y"u(@)a(—d')yu(-q)

—ﬂ(q )y u(@a(—a)[(E"— E) (g, —7u7") + (02 + p))Ju(—a)

— a(Q)[(E' = B)(g™ = 7"7") + (p1 + )" |u(@) () yuu(—a) }| . (4.4)
Here m stands for the nucleon mass and m, (a = ps, s, v) for the corresponding meson

masses. In the vector potential one has 4-momenta (p; + p}))* = (F + E',q + q') and
(p2 +phy)* = (E+ E',—q — {'). The form factor F2[(q' — q)?] takes the form:

Fil(d —a)’] = (Aai“(;,”j“w) , (4.5)

with the power constant n being 1 for the pseudoscalar and scalar potentials and 2 for the
vector potential. The mesons’ masses m,, the coupling constants ¢g,, f, and the cutoffs
A, are given in Table 4.1, taken from [21].

This OBEP has to be expressed in a form of Eq. (3.32), that is in terms of the
(); operators given in Eq. (3.30). This is done as follows. The OBEP’s operators are
combinations of o1 - q, o2 - q, o1 - q' and o - ' contained in the Dirac spinors. These
operators can be expressed in terms of the W; operators given in Eq. (3.29). It turned
out that it is easier to express first the W, operators in terms o1 -q, 02 -q, o1 - q and

o3 - q. One can invert the resulting expressions and apply them to the OBEP. Next by
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Table 4.1: Parameters for the Bonn-B potential. The shown o parameters are for NN
total isospin 0. For NN total isospin 1 the parameters are m, = 720 MeV, % = 18.3773,
Ay =2 GeV and n = 1.

meson || m, [MeV] %a fa 1A, [GeV]

ir ol n
m 138.03 14.4 1.7 1
0 548.8 3 15 |1
) 983 2.488 2 1
o 900 8.9437 1.9 1
p 769 0.9 6.1 1.85 2
w 782.6 24.5 0 1.85 2

means of Eq. (3.31), which relates the W; operators with €2; operators, the expression
of the OBEP in terms of the €2; operators will result. For all this purpose one can use
symbolic manipulation packages such as Mathematica. In Appendix C the potential final

expressions in terms of the W; as well as €2; operators are presented.

4.1.2 Phenomenological Potential

The development of the phenomenological NN potentials started in the 1950’s to provide
a simple description of the nuclear force, which then may serve as an input for nuclear cal-
culations [21]. The phenomenological potentials are constructed in terms of operators as
combinations of spin, isospin and orbital angular momentum operators (in configuration
space) representing processes occuring (or assumed to occur) in the NN interaction. For
a fixed isospin state a phenomenological potential is a sum of six independent opera-
tor terms, governed by translational, Galilean, rotational, space reflection, time reversal
invariances, symmetry condition and hermiticity [41]. The scalar functions multiplying
with the operators are different from one potential to another. The appearances of the
operators may also be slightly different as shown, for example, in Ref. [38] for Nijmegen
Group’s potentials and Refs.[9, 20] for the Argonne potentials. However, these sets of
operators are related one to another, as demonstrated for instance by the two sets of
operators W; and Q;, given in Egs. (3.27) and (3.32). Phenomenological potentials also
contains the one-pion-exchange (OPE) potential as long range part, since the OPE is a
well established concept for the nuclear force. The phenomenological potentials use a
larger number of parameters to be fitted to data, compared to the meson theoretical ones.

The charge dependent potentials Reid93 [38] and Argonne 18 (AV18) [20] belong to
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the best fitted phenomenological potentials [42]. Both are fitted to pp as well as np data
below 350 MeV laboratory energy and showing x?/datum ~ 1. In addition the AV18
potential is fitted also to low-energy nn scattering parameters and deuteron properties.
The Reid93 potential is parameterized for each partial wave, whereas the parameterization
of the AV18 is given for all partial waves. Hence, we choose the AV18 potential for our
calculations.

The AV 18 potential is given originally in configuration space and has the general form
V(r) = VEM(r) + V™(r) + VE(r), (4.6)

where r is the relative position between the two nucleons. The potential V#(r)
represents an electromagnetic part, which is excluded in this work. The charge dependent
potentials V™ (r) and V ®(r) represent the OPE part and the intermediate- and short-range
phenomenological part, respectively. The OPE part has standard spin-spin and tensor

operator terms

VTi(r) = Vi(r)oy - s + V] (r)Ss, (4.7)

where Sy denotes the tensor operator and the radial functions VJ%(r) and V;"(r) contain
exponential cutoffs. The V(r) part is expressed as a sum of central, tensor, spin-orbit,
L?, and quadratic spin-orbit terms abbreviated as c, t, ls, 12, [s2, respectively, in different

spin and iso-spin (St) states:
Vai(r) = Ve (r)1 + Vg, (r) Sz + Vi (r)L - S + Vi (r) L* + Vg* (r) (L - S)*. (4.8)

The coupling constant used in V7 (r), the radial functions and the 40 non-zero parameters
used in V(r) are given in Ref. [20].
For applying this potential in our calculations, we need to have V™(q’, q) and VZ(q', q)

given as

Vi(d,q) = Vi(d,q)+V/(d,q) (4.9)
Vi, q) = Vild,a)+Vi(d,a) + VE(d q) +VE(d,a) + Vii(d,q), (4.10)

which are the Fourier transform of V™ (r) and V%(r), respectively. We obtain explicitly

1 o0 , i
Vid.a) = 5o [ dro(er) V) (411)
1 (301 (d —q)o2-(d — o0 , .
i) = g (OISR D o) [T v ) (12
T P 0
1o .
Vildi@) = 55 [ drrisler) Vi) (4.13)

Vild.a) = 5 (—301-(q'—q>a2-(q'—q>

52 e +o; - 0'2) /0 derjg(pr)VStt(r) (4.14)
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i 1o )
Vid,q) = WS-(qxq’);/o dr 51 (pr)Ve; (r) (4.15)
1 2 oo
Vﬁ(q’,q) = ﬁq'q’;/o d7“7“3]1(P7")V£(7")
1 1o,
“om [q'2q2(1_72)];/0 drr'j(pr)Vsi (r) (4.16)

1 1 oo
Is2¢ 1 - 20 .o Q. o) 3 ls2
Vsi'(dha) = 53 (S’a-q' —8-aS-q) p/o drr°ji(pr)Vsi(r)
1 /1 , 1
~5-2 (g(q X Q)+ 5o (axq)oy - (g% q’))
1 oo , )
X3 ), A VAR ), (4.17)

where p = |q' — q|. The resulting operators can be easily represented in terms of the W;
operators and next by means of Eq. (3.31) in the €2; operators. The expressions in these

two operators W; and €2; are given in Appendix D.

4.2 Results and Discussions

In this section we present the results of our calculations for phase shifts, T-matrix elements
and observables.

In Subsection 4.2.1 we show some NN phase shifts resulting from our 3D calculations
(03p) and those from the standard PW calculations (dpw). The d3p are obtained from
Eq. (3.99) together with Eq. (3.108). Equation (3.99) relates between PW projected
S-matrix and T-matrix and Eq. (3.108) connects PW projected T-matrix with T-matrix
in the momentum-helicity basis.

In Subsection 4.2.2 we present the 2D half-on-the-energy-shell (half-shell) behavior of
the T-matrix elements 77\ (¢, ¢,0') in the momentum helicity basis. Two-dimensional
behavior means the angular and momentum dependence. We compare this behavior of
T d, g, ') resulting from the two chosen NN potential models Bonn-B and AV18, which
differ from each other in their nature. The 2D on-the-energy-shell (on-shell) behavior of
the T-matrix elements ,(v1vomimbq’|T|v1v9mimaq), in the physical representation is also
shown for a large range of energies up to 1 GeV laboratory energy.

Subsection 4.2.3 serves like Subsection 4.2.1 as a test. First we show comparisons
with the standard PW calculations, in which d3p are used. Next we show comparisons
with data at higher energy beyond the m-threshold for NN system as well as beyond the
highest energy, where the two NN potentials Bonn-B and AV18 are fitted. We present
our calculations together with the partial-wave analyses (PWA) taken from the CNS DAC
(http://gwdac.phys.gwu.edu/), which is also the source of the experimental data.
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4.2.1 Phase Shifts

Here we compare the NN 03 with the NN dpy, for projectile energies 100 and 300 MeV.
For the Bonn-B potential the phase shifts are given in Table 4.2. The agreement between
the two calculations, both performed in momentum space, is excellent. For the AV18
potential we give the phase shifts in Table 4.3. In this case the PW calculation is performed
in coordinate space [43]. The agreement is also very good, though not as excellent as in
the case of Bonn-B. The source of this slight discrepancy is presumably twofold. First,
the discrepancy may have been caused by imperfections in the numerical realization of the
Fourier-Bessel transformations of the AV18’s component functions given in Eqs. (4.11)-
(4.17). Second, there probably occur inaccuracies in the solution of the LSE’s of Eq. (3.73),
described in the following. See also Appendix E Section E.1 for descriptions and values.

Solving the integral equation in Eq. (3.73) requires an evaluation of the potential
functions on a grid of size ng: X (ng X ngr)?, where ngr, ngr, ngr are the numbers of
¢"-, ¢"-, 8"-integration points. For economical reasons we prepare the potential functions
once on a fine grid for p = |q” — ¢'| and obtain the value at points actually needed in the
calculation via interpolation. The grid is prepared within a range of 0 < p < 300 fm~!,
with the resolution being 0.2 fm~! for 0 < p < 10 fm™!, 0.5 fm~! for 10 < p < 50 fm~!
and 2.5 fm~! for 50 < p < 300 fm~!. Using values for the numbers of integration points

1

given in Section E.1 the resolution of actual grid for p is roughly 0.1-* fm~!, obtained

lis the upper limit in ¢”-integration

from 2q3/(ng x (ng» x ngr)?), where g3 = 150 fm™
for the AV18 potential. This resolution is much smaller than the one of the grid for
interpolation. Thus, this procedure may leads to larger numerical errors compared to a
direct evaluation of the algebraic expressions in the case for Bonn-B. The differences can
be clearly seen when comparing Tables 4.2 with 4.3. Note that in both cases a comparable
grid for the T-matrix elements is used. For the interpolation one can practically use any
reliable method. We use the modified cubic hermite splines [44], which is accurate yet

practical.

4.2.2 T-Matrix

Now we show the 2D behavior of the half-shell T-matrix elements 77 (q, qo,0) as the
solution of Eq. (3.73). Here ¢, # denote the outgoing momenta in the x-z-plane and ¢
denotes the magnitude of the incoming momentum in the z direction. These are displayed
in Figs. 4.1-4.7, all for 300 MeV laboratory energy, corresponding to gy = 375 MeV/c. In
the figures T (q, o, 0) are denoted by T for S = 0 and by Ty for S = 1, where A’ and
A take values of 0, 1. Due to the symmetry of the potential, and hence the T-matrix,
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Table 4.2: Comparison of the NN phase shifts obtained from our 3D formulation (d3p)
with those from the standard PW calculations in momentum space (dpw ) for the Bonn-B

potential at 100 and 300 MeV laboratory energies.

Eiap = 100 MeV Ejq = 300 MeV
SHLL, 03D Opw 03D dpw
LS 25.1928 | 25.1929 || -8.1755 | -8.1756
3P, 9.8046 9.8046 || -11.4799 | -11.4799
Lp -16.3131 | -16.3451 || -28.6946 | -28.8747
3P -13.4677 | -13.4677 || -26.3800 | -26.3800
35, 41.9858 | 41.9870 4.0667 4.0676
3Dy -12.9847 | -12.9846 || -23.7182 | -23.7181
€1 -2.2360 | -2.2357 | -4.0268 | -4.0265
'D, 3.3411 3.3411 7.4888 7.4888
3D, 17.6710 | 17.6710 || 25.3616 | 25.3617
3P, 11.7356 | 11.7356 || 17.3981 | 17.3981
3F, 0.7705 0.7705 0.5236 0.5238
€9 2.8402 2.8402 2.0166 2.0166
LRy -2.4397 | -2.4397 || -5.5865 | -5.5865
3Fy -1.6484 | -1.6484 || -4.0097 | -4.0097
3Ds 0.4203 0.4855 2.5719 2.5720
3G -1.0105 | -1.0105 || -4.4051 | -4.4051
£3 -3.6604 | -3.6604 || -7.2233 | -7.2233
e 0.4092 0.4092 1.3556 1.3556
3G, 2.2624 2.2624 7.3000 7.3000
3F, 0.4203 0.4203 2.4491 2.4491
SHy 0.1082 0.1082 0.5077 0.5077
€4 0.5575 0.5575 1.5509 1.5509
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Table 4.3: Comparison of the NN phase shifts obtained from our 3D formulation (d3p)
with those from the standard PW calculations in configuration space (dpw) [43] for the
AV 18 potential at 100 and 300 MeV laboratory energies.

Ejp = 100 MeV || Ejg, = 300 MeV

2571 LJ 63D 5PW 53D 5PW
1S, 25.99 25.94 || -4.62 -4.60
3P, 8.69 8.69 || -11.05 | -11.06

1P -14.19 | -14.20 || -26.18 | -26.28
Py -13.06 | -13.07 | -28.38 | -28.49
35, 43.69 43.56 8.15 8.16
3D, -12.08 | -12.09 || -24.80 | -24.90
€1 -2.49 -2.49 || -4.38 -4.39
D, 3.81 3.81 9.45 9.44
3D, 17.14 17.10 || 25.11 25.02
3Py 11.02 11.00 || 16.96 16.91

3Fy 0.67 0.67 0.77 0.76
€9 2.70 2.70 2.21 2.21
LFy -2.23 -2.23 || -4.87 -4.88
3F3 -1.35 -1.35 || -2.51 -2.51
3Ds 1.61 1.61 0.22 5.21
3G -0.93 -0.93 | -4.19 -4.20
€3 -3.50 -3.50 || -7.17 -7.16
e 0.40 0.40 1.42 1.42
3Gy 2.22 2.22 7.35 7.34
3Fy 0.45 0.45 2.75 2.74
SH, 0.07 0.07 0.31 0.31

€4 0.51 0.51 1.54 1.54
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it is sufficient to consider only these two values of helicity. The notations Re and Im
have their usual meaning as indicating real and imaginary parts. Figures 4.1-4.5 show the
Bonn-B potential and Figs. 4.6-4.7 the AV18 potential cases.

Figure 4.1 shows T (q, qo, 0) for S = 0. On the left side we see the parity-even and
on the right side the parity-odd case, which are distinguished by the symmetric and the
antisymmetric angular behavior of the T-matrix elements. The T-matrix elements peak
sharply at ¢ = ¢ in forward and backward scattering directions, show strong 2D behavior
around ¢ = ¢y and a very weak momentum dependence for momenta far away from ¢q.
The T-matrix elements for parity-even case exhibit a similar behavior as the symmetrized

T-matrix elements of the two-boson case studied in Ref. [13].

Figures 4.2-4.5 display 17 (q, qo,0) for S = 1. Coming as two pairs, each showing
first the real part and then the imaginary part of the T-matrix elements, the first pair
(Figs. 4.2 and 4.3) show the parity-even case and the second pair (Figs. 4.4 and 4.5)
the parity-odd case. We see various strong angular and momentum dependence of the
T-matrix elements for momenta around ¢y and a very weak one for momenta away from
do-

Next we take a look at Figs. 4.6 and 4.7, displaying a few examples of T(q, qo, 0) as
obtained from the AV18 potential. Thus, we will see how strong the difference is between
the half-shell T-matrix elements obtained from the two potentials Bonn-B and AV18. In
Fig. 4.6 the real and imaginary parts of T%5(q, qo, ) for S = 0 are shown, where the left
side is for parity-even and the right side is for parity-odd case. Compared with Fig. 4.1
along the on-shell line (¢ = ¢g) the corresponding T-matrix elements obtained from the
two potentials are identical. However, the detailed structures are different, especially the
parity-odd T-matrix elements. One sees that at large momenta ¢ the Bonn-B T-matrix
elements show a stronger angular behavior than the AV18 ones. For the case S = 1
we present only some T-matrix elements, representing the ones which look similar to and
those quite different from the corresponding Bonn-B T-matrix elements. The upper part of
Fig. 4.7 shows two AV18 T-matrix elements considerably different from the corresponding
Bonn-B ones displayed in the upper part of Fig. 4.5. The lower part of Fig. 4.7 shows
the ones relatively similar, the figure in the lower left should be compared to that in the

lower left of Fig. 4.2 and the figure in the lower right to that in the lower right of Fig. 4.3.

We turn now to the on-shell physical T-matrix elements
o{r1ivamimbhqoq|T |v1vamimaqg),, simplified in notation as (mimb,|T|mymsy), where
mi,m; = + (i = 1,2) represent the two spin-half states. We are interested in the on-
shell T-matrix elements, since these are closely related to observables. Equation (3.76)

shows one example of the observables, the spin averaged differential cross section. In the
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7 MeV~2,

0 as function of ¢ and cos@ in units 10

754 q, qo, 0) for S

Figure 4.1:

300

375 MeV /¢, corresponding to Ejg

MeV. The left side displays the parity-even and the right side the parity-odd case.

B potential for gq

calculated using the Bonn
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Figure 4.2: The real part of the parity-even T3 (q, qo, #) for S = 1 as a function of ¢ and
cos f in units 1077 MeV =2, calculated using the Bonn-B potential for ¢y=375 MeV /c.



%)

4.2 Results and Discussions

%

‘«\\\\\\.

\\
"

—
>

=

/

~” o

o
P S Q

WSS

o i

" O

&)

3 \ //o

(o

Figure 4.3: Same as Fig. 4.2, but for the imaginary part.
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Figure 4.4: The real part of the parity-odd 175 (q, qo,6) for S = 1 as a function of ¢ and
cos f in units 1077 MeV 2, calculated using the Bonn-B potential for ¢o=375 MeV /c.
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Figure 4.5: Same as Fig. 4.4, but for the imaginary part.
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Figure 4.6: T75H(q,qo,0) for S = 0 as a function of ¢ and cosf in units 107 MeV =2

calculated using the AV18 potential for ¢
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following we will use the term amplitudes for the on-shell T-matrix elements.

Considering rotational and parity invariance, one ends up with six independent am-

plitudes,
++T++) = =T]—-)
++ T =) = (=ITI++)
+-1Tl++) = +T++H)=-F-T--)=—(=+TI--)
++T+-) = G+ -1 =-(-Tl+-)=—(—-T-+)
+-1Tl+-) = (+IT|=+)
(—+|T|+—=) = (+—-1|T|=+). (4.18)

Therefore, instead of calculating 16 amplitudes for all possible m;, m} (i = 1,2) combi-
nations one needs only to calculate these six amplitudes. In Figs. 4.8-4.10 we display
the squared absolute values of these six amplitudes for the np system as a function of
the laboratory energy and the c.m. scattering angle cos#f, calculated from the Bonn-B
potential. We show the amplitudes up to 1 GeV, which is much beyond the energy range,
where the Bonn-B as well as the AV18 potentials defined, namely below the 7-threshold.
At this point we only want to demonstrate that our calculation at higher energies takes
the same effort as the one at very low energies. The reason is of course that we do not
work with partial waves. We would like to remark that, as indicated in Eq. (3.102), these
on-shell amplitudes can also be calculated from the PW projected S-matrix and T-matrix

elements. For a numerical test of our formulation we used this relation.

4.2.3 Observables

In this subsection we compare NN scattering observables obtained from our 3D calcu-
lations with experimental data. However, at first we compare with results from standard
PW calculations.

By definition a 3D calculation contains contributions from all partial waves. Thus,
comparing with PW calculations, where increasing maximum total angular momentum
Jmaz are taken into account, is instructive. Here we can observe how with increasing j,,q.
the PW calculations converge towards the complete sum of all partial waves. We show
the spin averaged differential cross section (shortly called the cross section) and two spin
observables A, and D, for the np system.

Figures 4.11-4.13 display the above given observables for E;,;, = 100 MeV and Figs.4.14-
4.16 display them for Fj,;, = 300 MeV. All figures show calculations based on the AV18
potential. At Ej,, = 100 MeV je: = 10 gives a completely converged result for the cross
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Figure 4.8: The squared absolute value of the on-shell physical T-matrix elements denoted

by [{mim}|T|mims)|? (see text) in units 107 MeV~* as a function of Ej., and cos 6.
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1,2) combinations.

(i =
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Figure 4.9: Same as Fig. 4.8, but for different m;, m,
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1,2) combinations.

(i =

/
)

Figure 4.10: Same as Fig. 4.8, but for different m;, m;
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section and D;. For A, jne = 8 is enough. At Ej,, = 300 MeV more partial waves
are needed. The cross section and D, require jpq, = 16 for a converged result, while A,
needs only j,... = 12. For the cross section, the high values of j,,., are required to reach
convergence at forward and backward directions. These comparisons give us a view of
how many LSE’s are to be solved in the PW calculations. One characteristic of a PW
calculation is also shown in these comparisons, that is its oscillatory behavior. This is
observed most obviously in Fig.4.16. A PW calculation of higher order oscillates more
rapidly than that of lower order. This behavior reminds us of the Legendre polynomial
occuring in the PW expansion of a plane wave.

Next we compare with experimental data. We choose some energies beyond the
m-threshold for the NN system, where the potentials are fitted, and at limit of the fit
range of the two potentials Bonn-B and AV18. For lower energy we have already seen
that our 3D calculations agree with the converged standard PW ones.

The reason of choosing higher energies is the following. First, the 3D formulation
is especially advantageous at higher energies. Second, later we consider three-nucleon
processes such as the proton-deuteron break-up process. For this reaction data exist at
higher energies up to about 500 MeV. The off-the-energy-shell (off-shell) NN T-matrix
elements are the input for calculations of this process. Thus, a comparison of our results
for the NN observables to data are important.

In Figs. 4.17-4.22 we present various observables from 3D calculations for both po-
tentials Bonn-B and AV18 together with the partial wave analyses (PWA). The PWA
and data are taken from CNS DAC (http://gwdac.phys.gwu.edu/). In the figure captions
we give the individual source of the experimental data. We include also observables for
the pp system in this evaluation (see Figs. 4.18 and 4.22), since the proton-deuteron
break-up process involve both np and pp sub-systems. In general the figures show a
good agreement between our calculations and data as well as the PWA. Even for the pp
system in Figs. 4.18 and 4.22 the Bonn-B potential predicts the data reasonably well. In
most cases predictions from the AV18 potential and the PWA are close to each other.
We conclude from this evaluation that even for these higher energies our 3D calculations

using the two NN potentials Bonn-B and AV18 are acceptable.
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Figure 4.11: np spin averaged differential cross section at Ej,;, = 100 MeV. The curve
3D is obtained from the 3D calculation. The other curves are obtained from the PW

calculations with indicated maximum NN total angular momentum 7.
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Figure 4.12: Same as Fig.4.11, but for analyzing power A,.
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Figure 4.13: Same as Fig.4.11, but for polarization transfer coefficient D,.
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Figure 4.14: Same as Fig.4.11, but for Ej,, = 300 MeV.
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Figure 4.17: np spin averaged differential cross section at Ej,, = 340 MeV. “EXP” are
data taken from Franz, PS87, 14 (2000). The curve “PWA” is obtained from partial wave
analyses, the curve “Bonn-B” from calculations based on the Bonn-B potential and the

curve “AV18” from calculations based on the AV18 potential.
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Figure 4.18: Same as Fig. 4.17, but for pp analyzing power A, at Ej,, = 350 MeV. Data
source is Prezwoski, Phys. Rev. C58, 1897 (1998).
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Figure 4.19: Same as Fig. 4.17, but for np depolarization D at Ej,;, = 380 MeV. Data
source for both “EXP1” and “EXP2” is Arnold, EPJC17, 83 (2000).
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Figure 4.20: Same as Fig. 4.17, but for np polarization transfer coefficient D; at E;,, = 386
MeV. Data source for both “EXP1” and “EXP2” is Ahmidouch, EPJC2, 627 (1998).
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Figure 4.21: Same as Fig. 4.17, but for np spin correlation parameter A,, at Ej,;, = 380
MeV. Data source for both “EXP1” and “EXP2” is Arnold, EPJC17, 67 (2000)
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Figure 4.22: Same as Fig. 4.17, but for pp spin correlation parameter A,, at Ej,, = 350
MeV. Data source is Prezwoski, Phys. Rev. C58, 1897 (1998).



Chapter 5

THREE-DIMENSIONAL
FORMULATION FOR THE
DEUTERON

The three-dimensional approach for NN scattering developed in Chapter 3 was started
with the creation of the momentum-helicity basis. Once this basis is defined the scattering
equation is projected on this basis and the scattering as well as the NN potential matrix
elements are calculated in that basis. Thus, it is general and applicable not solely to NN
scattering but also to the NN bound system, the deuteron. In this case, the nonrelativistic

deuteron equation and the states are projected on the momentum-helicity basis.

The motivation to use directly the relative momentum vector in calculating NN scatter-
ing is to avoid the complications which occur in the standard partial wave decomposition,
when very many partial waves take part in the process. Since the deuteron state consists
of only two partial wave projected components, namely s and d waves, there is no such
a complication. However, developing the three-dimensional method leads to the use of
a three-dimensional representation of the NN potential, in other words we abolish the
partial wave representation of the NN potential. If one wants to use the potential defined
in three-dimensional fashion, then it is necessary to apply the three-dimensional method
to the deuteron as well. It is also of interest to investigate the deuteron properties in a
three-dimensional fashion in momentum space. In configuration space a corresponding
three-dimensional investigation on the deuteron wave function and densities based on the
NN potential AV18 [20] has been carried out in Ref. [45].

In addition we derive the deuteron wave function in operator form in momentum
space. The simple structure of the wave function in spin operators is suitable for the

momentum-helicity basis and hence poses no difficulties in projecting the wave function

71
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on this basis. The projection gives analytic expressions of the angular behavior of the
deuteron wave function, which are different from the familiar ones. The deuteron wave
function in operator form enables to investigate probability densities of various internal
spin configurations of the deuteron. The resulting expressions have an analytic angular
behavior. In configuration space a corresponding expression of the deuteron wave function
can be found in Refs. [46, 47].

We present two formulations for the deuteron in the momentum-helicity basis. The
differences of these two formulations emerge from the wave function and show by no means
contradictions between the two formulations. In the first formulation we directly project
the deuteron state on the momentum-helicity basis, thus introducing the wave function
components of the deuteron in this basis. In the second formulation we first derive an
operator form of the deuteron wave function and then project it on the momentum-helicity
basis. The wave function components obtained in this manner exhibit an analytic angular

behavior.

We describe the first formulation in Section 5.1, where we begin with the expansion
of the deuteron state in the momentum-helicity basis and at the same time introduce the
deuteron wave function components in this basis. We evaluate the normalization of these
wave function components as well as the deuteron density. Next we project the deuteron
eigenvalue equation on the momentum-helicity basis and end up with a set of two coupled
integral equations in two variables, i.e. the magnitude of the relative momentum and the
angle between the relative momentum and some arbitrary z-axis. We evaluate the partial
wave components, the s and d waves of the deuteron wave function, in terms of the wave

function components in the momentum-helicity basis to test the formulation.

The second formulation is described in Section 5.2. We begin with the derivation of
the deuteron wave function in operator form, in which we make use of the deuteron partial
wave components s and d waves. Next we project the wave function on the momentum-
helicity basis. As result we can extract the angular parts of the wave function components,
which are analytic. We proceed with further simplifying the deuteron eigenvalue equation
obtained in the first formulation, and finally get a set of two coupled integral equations
in one variable, i.e. the magnitude of the relative momentum, from which one can get
the radial parts (in momentum space) of the deuteron wave function components. We
connect these radial parts of the deuteron wave function components to the deuteron s

and d waves.

Using the deuteron wave function in operator form we can investigate probability
densities of various internal spin configurations of the deuteron. For an overall polarized

deuteron there are various possible spin orientations of the two nucleons in the deuteron.
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For instance, both nucleons have their spins up, or one nucleon has its spin up and the
other down. We derive in Section 5.3 analytic expressions of the corresponding probability

densities and display the results.

5.1 Formulation 1

5.1.1 Deuteron Wave Function in the Momentum-Helicity Basis

Consider |\Iffiwd> as the deuteron state, with M, being the projection of the total angular
momentum along an arbitrary z-axis. The state will be expanded in the momentum-
helicity basis |q; @QSA; )™ defined in Eq. (3.16). Inserting the completeness relation for

the momentum-helicity basis given in Eq. (3.26) gives
M, 1 - ~ la 1a ~ M,
wi) = 12 /dqlq;qlA;0> (a; @1A; 0] Wi')
A=—-1
1 A a la ~ ~ a la N
= Z/dq{lq;qll;m1 (g 115 0] W) + [ q10;0)* ** (q; ¢10; 0] W3™)
+ Ja;al — ;00 " (g; a1 — 1;0[ w3 )], (5.1)

in which we have inserted the deuteron properties, i.e. S = 1, t = 0 and the parity is

even. According to Eq. (3.44) the momentum-helicity basis can be written as

|, aSA; )™ = (la) + 1. [—q)) [aSA) [t), (5.2)

and this together with Eq. (3.20) gives the following symmetry relation for the momentum-
helicity basis

& aSA )™ = n(=)° (I=a) + 7 @) [-aS — A) [t)
= (=) |—a; —aS — A )™ (5.3)
Thus, we can simplify Eq. (5.1) to
1 ~ a a ~ ~ a a ~
i) = 7 [ da{la;ait;0) " (a:ait;0) W) + la; q10;0)'* ' (asq10;0] i)
+ ] = @ —qi1; 00" M (—q; —q11;0[w}")}
1 A~ a a A ~ a a A~
= Z/d<:1{|<:1;qll;0>1 " (a1 0] W' + Ja; 105 0)'* 1 (q; 4105 0] W) )
+ o q11;0)* 1 (q; g11; 0| )) |
1, e 1 e
= /d01{§|q5q11;0>1 (1L 0] W) + - o 410:0)" 1 (q; 10;0) ‘1’34“>}

L. a L. a
[ da {5 laart;0) ee(a + | las 100 (@) | (54)
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In the last step of Eq. (5.4) we have defined the deuteron wave function component

in the momentum-helicity basis as

Px () =" (a5 q1A; 0] W), (5.5)

Since the state |q; @SA) is obtained by rotating the state |¢z; zSA) by means of a rotation

operator
R(q) = exp —iJ,pexp —iJ,0, (5.6)

as
la; @SA) = R(q) |qz; 2SA), (5.7)

where J = L + S is the operator of total angular momentum, it follows that
@SNt W) = 1 gz aSA; | e e Wl
= Mt la gz 2SN t| VY \Iffiwd> : (5.8)

In this way, we can pull out the azimuthal dependency of gpf\\/[d(q) as

pr (@) = ¢y (g, 0)e™, (5.9)
and finally get the expansion of the deuteron state in the momentum-helicity basis as
1 ~ a ]- ~ a 7
v = /dq{§ a5 a13;0)"* 1™ (g, 0) + 7 | 410;0)' soé”d(q,G)} Mt (5.10)

The normalization of the wave function components p}“(q, #) can be determined from

the normalization of the deuteron state according to the following equation
a3 = o [y e )

x {— |a; 41150y 01" (q,0) + ~ Iq; al10; 0y iy (q, 9)} e!Mal0=7)

_ /dq/dq{ o @110 @ 411 0 M (¢, 0) 4 (g, 0)
+16 “(q';4'10; 0] q; G10; 0)"* 03" (¢', 0) 03 (g, 0)
+51; “(q; q'11; 0] q; §10; 0)" 0" (¢', 0" d" (¢, 0)
+%1 (o 610; 0] q: 11 00 M (o )" (qjg)}eiMm—aﬁ')
= [da{5eM @0 (0.0
5 (A0 (@.0) = ()4 (g, — ) 9 (0,0) | (5.11)

In obtaining this equation we have used the orthonormality of the momentum- helicity

basis given in Eq. (3.23). To proceed we need to know the symmetry property of ¢\ (q, f).
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7

Using the symmetry relation given in Eq. (5.3) we can find the relation between ¢}(q)

and 2% (—q) as
pNi(@) = ' (q;qlA; 0] W)
= = (—q;—ql — A;0 W)
and therefore,
Pr (g, 0) = —(—) MY (g, 7 — 0).

Thus, the normalization of ©}“(q,#) is determined by the following equation:

2
wi —27r/ dqq/dcose{ Ya(q,0)[ + 4‘@ ,9)\}.

Now we define the deuteron density p™(q) as

(v

(a5 1A; 0] Uy

A~

1
pMia) = > (W |a; alA; 0)'
A=-1

(5.12)

(5.13)

(5.14)

(5.15)

such, that the probability to find a deuteron in any possible helicity state and having

the relative momentum of the two nucleons between q and q + Aq is pM¢(q)Aq. This

definition follows naturally from the following algebra:

(v

SAwt

. P
= Z/dq@y" ;s QLA 0)' (s 41 0] W)
A

= / dgp™(q)

Inserting Eq. (5.10) into Eq. (5.15) this yields

1 , 1
pia) = 5 30 [dale M Sl (g 00 (a3 115 0] @t A 0)

2
+i¢3“*(q',9’) (a';4'10;0] q; q1A; 0)’' }

X /dq”{; (@ @100 |q"; 41130 1" (g", 0")
+ %1“ (a; a1A; 0 9”5 4"10;0)' ™ (q”, 9)} e!Mad”

1 1

1 {gpi\/[d*(q7 e)eiiqugéAl - Qpi\/[d*((b ™= 9)6 iMalgtm) 5/\ 1

4 A=-1

1 : 1
+ 50 (0, 0)eMH05 — S (g7 — B)e Mo g |

% {1 (q, 00425y, — o (g, 7 — O)eMet D5,

1 .
vy = 3 /dq Ui | qSA; 1) 1 (g asAt W)

(5.16)
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1 .
+ (103411((]70) dd>5A0 _ ?100 ( q, g)esz(¢>+w6A0}

DN | —

Il
Ry
M)—‘

p {@1"" (@)da1 — 91" (—a)da, 1 + 93" ()50 }
X {80%(01)51\1 - 80%(—(1)5/\,—1 + @éwd(QﬁAo} . (5.17)
Thus, it follows that
pMia) = i (e + % (@) + % o)

= i oM (q.0)[ + % bt (q.0)[ + i [ottaq,m — o). (5.18)

5.1.2 Two-Dimensional Deuteron Eigenvalue Equation
The deuteron state | W) satisfies the eigenvalue equation
(Ho — Eq+ V) |wj) =0, (5.19)

where E, is the deuteron binding energy. Projecting this eigenvalue equation on the state

lq; @1A;0)" and using the expansion of |¥4™) given Eq. (5.10) leads to
1 (s q1A; 0] (Hy — B+ V) [W)')
=1 (q; q1A; 0] (Hy — Eg) [9)
+'(q; q1A; 0|V
]‘ a ]— A a ; /
/dq {5 o 4'11;0)™ o™ (q,0') + 1 la’; 4'10; 0)" sOéwd(q’,@’)}6“”""5
=|=~-E 0)e'Ma?
(m d> Pr(q,0)e
1 . —_
+§/dq’ (g LA OV [of; 11500 o1 (q, )M
1 . _—
+Z/dq’ " (q; LA 0]V |g3 4105 0) ' ) (¢, 0")e'M?
¢ :
= (— — Ed) ( ,Q)elMdd)
+ [ da V0@ @)t (@ o) + VS @) )} et (520)

Hence, the projected eigenvalue equation for the deuteron on the momentum-helicity basis

consists of a set of two coupled integral equations

q2 M,
(E - Ed) @Ad(qag)

_|_/dq/€7z’Md(¢ @) { VllO( /) iwd(ql701) VllO( q, q /) éwd(ql701)}:0, (5‘21)
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where A = 1,0. The wave function components 4 “(q,#) have no azimuthal dependence,
and therefore the ¢'-integral in this equation can be carried out independently. Recalling
the definition given in Eq. (3.70), the final expression for the deuteron eigenvalue equation

is given as
q2 E My 0 1 ood 12 L d 9/ 110,My i 0 0/ Mg 1 9/
= EBa)ex"(@0) + 5 ) ddq” [ deostvy(a,q,0,0)00(d0)
1 00 1
+ Z/o dq' ¢” /_ldcosﬂ' oA (q, ¢, 0,0) b (¢, 0') = 0. (5.22)

This resulting set of equations for the deuteron, which consists of two coupled two-
dimensional integral equations, is consistent with the set of equations for a NN system
in scattering states evaluated in Chapter 3 (see Eq. (3.73)). Arriving at this point we
would like to give some remarks. The deuteron eigenvalue equation given in Eq. (5.22)
and thus the resulting deuteron wave function components from this equation, which are
defined in Eq. (5.9), are obtained with the assuming of the deuteron properties, i.e. S =1,
t = 0 and consequently the parity being even. As a matter of fact this assumption is not
necessary. Even if we obtain a set of equations for a NN bound system with any spin,
isospin and parity, a calculation using a realistic NN potential will show that the solution
of the equations exists only for that certain quantum numbers. In other words, nature
will reveal itself without additional assumptions. Therefore, for this approach there is no
a priori knowledge needed, the approach will automatically provide full insight into the

deuteron.

5.1.3 Deuteron Partial Wave Projected Wave Function

Now we would like to connect the deuteron wave function components 4'# (g, #) with the
standard partial wave components ¢;(q) of the deuteron wave function, which are defined
as
Wi(g) = (q(U1)jm; 0] W), (5.23)

where |¢(1S)jm;t) is the partial wave basis given in Eq. (3.84). Again, for simplicity, we
use the already known spin and isospin of the deuteron, but left [, 7 and m arbitrary,
which are the orbital, total and magnetic total angular momentum quantum numbers,
respectively.

We begin by inserting into the projection in Eq. (5.23) the expansion of ‘\Iféwd> given
in Eq. (5.10):

Uiq) = 1 dq' (q(11)jm; 0| q'; q'11; 0)"* oMa (¢, §") e Ma?
2

1 . ~ a i /
+Z/d0f (q(11)m; 0] o5 4'10; 0)™ i (¢, ') eMa?’. (5.24)
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Recalling the overlap given in Eq. (3.88) and using Eq. (5.2), the scalar product of the

partial wave and momentum-helicity basis is given as

(d (1) jm; ) @ aSA; )™ = ((¢'(1S")jm| @) |aSA) + . (¢ (1S")5m| —a) |aSA)) ('] t)
o(g" — ]
= M(SS'S(SM Z C(Sj; pym — p,m)
qq o
x (V@) + Yo (—@)) e 1m0y L (0)

Y —
= (1 + T]w(—)l) %55'5&%

x 3 C(1Sf; p,m — p,m) Yy (@)™ mM2ds _ \(6)
I

20+10(¢" — q

x D C(18j; ym — pym)dyo(0) i, (6)
7

imep

5515(5t/t6_

3 —
)0,

20+1

" e~ ™mPC(1S7; 0AN)d (), (5.25)
7r

in which we have used the complex conjugate of the relation given in Eq. (3.91) as
well as the complex conjugate of an addition theorem for Wigner’s D-functions given

in Eq. (3.100). Inserting this scalar product into Eq. (5.24) gives

Uilq) = (1 + (—)l) \/?/02” i)Y

1

1 ; 1 ;
x [ deost! { SC(1L5: 011) (001" (0,8) + 31155 000) k82" (0,0}

= (14 (=) /72l + 1)dmu,

1 : 1 ;
x [ deost? { (11 011)dn(0)l™ (0,6 + S C(1L5: 000) s (0)i6" (0.6}
(5.26)
Equation (5.26) reveals that the partial wave projection of the deuteron state exists only

for m = My and even [, which demonstrates the even parity of the deuteron. Thus, we
obtain

C(115;011)d}y,1 (6)01™ (4, 6')

+ 3C0000) o ()2 (0,60} - (5:27)

Equation (5.27) does not exhibit exactly the well known deuteron quantum numbers [,

j and m. These quantum numbers must be determined by explicit calculations, in which
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one inserts into Eq. (5.27) the deuteron wave function component ¢} (g, ) obtained as
the solution of Eq. (5.22).

5.1.4 Explicit Solution of the Two-Dimensional Deuteron Eigen-

value Equation

In this section we show results from numerical evaluations of Eq. (5.22). To solve this
eigenvalue equation we use the power method [48, 49] and get the deuteron binding
energy Fy as well as the deuteron wave function components gpf\\/[d (g,0). A modification
to the power method is necessary as described in Ref. [50] to exclude unphysical solutions
corresponding to bound states in the repulsive core region of the NN force. The calcu-
lations are carried out based on the NN potentials Bonn-B [21] and AV18 [20].

The integrals in Eq. (5.22) are evaluated by means of the Gauss-Legendre quadrature.
For both potentials 10 integration points for the ¢'-integration and 32 integration points
for the cos @'-integration are sufficient. The hyperbolic mapping with cut-off (see Appendix
E) is employed for the ¢’-integration. Using the Bonn-B potential we obtain the deuteron
binding energy 2.224 MeV, with the ¢'-integration interval being cut off at 30 fm . Using
the AV18 potential the resulting deuteron binding energy is 2.225 MeV and the cut off is
at 8 fm~1.

In Fig. 5.1 we display the deuteron wave function components gp%"(q, g) for My =0
as functions of ¢ and cosf. The figures on the left result from calculations based on the
Bonn-B potential and those on the right on the AV18 potential. The results obtained
from the two potentials look quite similar. Both drop steeply as the magnitude of the
relative momentum between the two nucleons inside the deuteron increases from zero to
about 100 MeV /c. The wave function component ¢9(g, ) shows a cosine-like behavior
indicated at ¢ = 0 by the straight line connecting its maximum at # = 0 with its minimum
at @ = 180° through zero at = 90°. In contrast, the wave function component ©%(q,0)
displays sine-like behavior; it peaks at # = 90° and vanishes at # = 0 and 180°. The
figures reveal that the maximum of ©)(q, f) is larger than that of ¢©%(q,0).

Fig. 5.2 displays the deuteron wave function components ¢\ (q,0) for My = 1 and
—1 as functions of ¢ and cos #, resulting from calculation based on the Bonn-B potential.
Calculations based on the AV18 potential give very much similar results and are therefore
not shown here. Similar to those with M; = 0, these wave function components also
decay quickly as the relative momentum between the two nucleons inside the deuteron
increases from zero to 100 MeV/c. The two figures (a) and (c) depict ©j(g,6) and
vy (g, 0), respectively. Both vanish at # = 0 and 180° but differ in sign for the other
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f-values. For instance, while at 6§ = 90° ¢}(q, 0) reaches its minimum, ¢y (q, ) reaches
its maximum. The figures (b) and (d) display ¢1(g,6) and 7' (g, 6), respectively, which
show also opposite behavior. ¢1(q,0) peaks at # = 0 and vanishes at # = 180°, whereas
©1 '(q,0) peaks at § = 180° and vanishes at # = 0. This angular behavior of the two wave
function components suggests a relation between the two functions, which will become
clear later in Section 5.2.2. It is shown that for My = 1 and —1 the maximum of ¢, (q, )
is larger than that of ©™ (g, 6).

Having obtained the deuteron wave function components, it is straightforward to cal-
culate the deuteron densities p¢(q) given in Eq. (5.18). These densities based on the NN
potential Bonn-B are displayed in Fig. 5.3. The figures (a) and (b) are for My = 0, while
those figures (c) and (d) are for My = 1. For My = —1 the density is the same as that
for My = 1. Calculations based AV18 potential give similar results and are therefore not
shown. The figures (a) and (c) displays the two deuteron densities as functions of ¢ and
cosf, and the figures (b) and (d) depicts them as functions of the Cartesian components
of q, i.e. ¢, and ¢,. A cut through the ¢,-q,-plane is shown, where each curve represents
an equidensity curve. Since the wave functions are invariant under rotations around the
¢.-axis, this curve rotated around the ¢,-axis will form a three-dimensional equidensity
surface of the deuteron. For small ¢ the two densities show uniform distributions along
f, and therefore the equidensity surfaces are spherical. The largest densities at ¢ = 0
for all My’s means that the most probable configuration for the deuteron is that the two
nucleons being at rest with respect to each other.

The connection to the standard partial wave expansion by means of Eq. (5.27) returns
the well known s and d wave components of the deuteron wave function. Thus, the

deuteron properties are well revealed by this numerical connection.

5.2 Formulation 11

5.2.1 Deuteron Wave Function in Operator Form

The deuteron has a neutron and a proton as its constituents. These two nucleons may
have their spins pointing in some possible directions even if the deuteron is overall
polarized. Therefore, it is interesting to investigate the various possible deuteron in-
ternal spin configurations. In order to realize this it would be appropriate if the deuteron
wave function is structured such that the deuteron spin state is separated from the other
parts. In this way, operators for some spin configurations can be applied to the wave

function and their probability densities can be calculated easily. We derive in this section
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Figure 5.1: The deuteron wave function components for My = 0 in units 107> MeV 1 as
functions of ¢ and cosf. The figures (a) and (b) are obtained based on the NN potential
Bonn-B and the figures (c) and (d) are obtained based on AV18. Figures (a) and (c)
depict ¢)(q, #) whereas figures (b) and (d) display ¢9(q, 6).
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(d)

Figure 5.2: The deuteron wave function components based on Bonn-B as functions of

¢ and cos@ in units 107> MeV™"%: (a) p3(q,0), (b) ¢i(q,0), (¢) ¥o'(¢,0) (c) and (d)
-1

v (q,9).
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Figure 5.3: The deuteron density based on Bonn-B for M; =0 ((a) and (b)) and M,; =1
((¢) and (d)) in units 1075 MeV 2, shown as functions of ¢ and cos 6 on the left side, and
of ¢, and ¢, on the right side. The contours in figures (b) and (d) represent equidensity

curves on the g,-q,-plane.
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the deuteron wave function in momentum space with that structure, evaluate its proper-
ties especially its angular behavior and use it to get another set of deuteron eigenvalue
equation. The application of this wave function to the evaluations of probability densities
for the deuteron internal spin configurations is presented in Section 5.3.

We begin with the partial wave expansion of the deuteron state ‘\Ifilwd>:

i) = 5 [7 dgq? a(1)10M430) i (a), (5.28)
1=0,2
where ;(q) is defined in Eq. (5.23). The momentum space representation of this expansion
results as
viaq) = (q|wi)
— (q Z/ dq' ¢ | (1)1 My; 0) i (¢')
1=0,2
= (a3 [ dd ¢ O My =, moMa) (103 = ) 1) 10) t1(4)
1=0,2
= / dd q 'QM
1=0,2 7q

X Z C(lll; Mg — mg, mst)YlMd—ms (fl) |1m5> |0> 1/)5((],)

1
= |1M, 0
| d> \/EwO(QH >
+ {|]_1> 0(211, Md - 1, ].Md)YngMdfl((A])
+|10) C(211; M40Mg) Yo, (Q)

L 1) O My + 1, ~1, M) Y1 (@)} a(g) [0) (5.29)

where we have used the complex conjugate of the projection given in Eq. (3.87). Here |0)
denotes the isospin state |t) with ¢t = 0.
We would like to simplify this expression so that it has the form

F(q) = {covo(q) + cata(q) } [1My) |0) (5.30)

where the deuteron spin state is separated |1M,), and ¢y and ¢, are operators acting on it.
In fact, the operator ¢y is a constant, i.e. ¢y = \/%E (see Eq. (5.29)). The operator ¢, must
be scalar under rotation, since the spin state |1M,) has already the correct transformation
property under this rotation. At the same time, according to Eq. (5.29) this operator c,
must connect the states |1 — 1), |10) and |11) to the state |1M,). Thus, the operator c;
has to be formed as combination of the spherical components of the spin operators o

and os.
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To proceed, we choose as example My = 1. Inserting My = 1 into Eq. (5.29) gives

vi(q) = [11) jl_wwo(q) 0)

+ {|11> \/%YQO(Q) — [10) \/%YZI(Q) +1-1) \/gym(fl)} tha(q) 0). (5.31)

The explicit expressions of the spherical harmonic functions are (see [32] for similar

expression in coordinate representation)

Yoo(q) = i\/g@ cos? ) — sin? 0)

1 5)
=g ;(2qf—qi—q§)
1

5 2
= —/= _ 5.32
2 —(a + @14-1) (5.32)

1 /15 )
Yori1(q) = qié\lgmsﬁsinﬁei“’5

1 [15
- 5 o\ 5 4z\4z +
:F2q2 5,4 (¢x = qy)
1 [15

= —t/— 5.33
22 ﬂ_QOQ:I:l ( )

R 1 /15 . ;
Yoio(q) = 1 %sz fe?

1 /15

= —/—(q, £ig,)?
4q? 27r(q iay)

1 (15,
= /= 5.34
2q2 2ﬂ_qi17 ( )

where ¢y, o and ¢_; are the spherical components of the momentum [31]:

1
= —— T :I: Z P — (, 2 — 2 —_1 = 2 535
q+1 :F\/g(q q ) qo =4 o q19-1 =4 ( )

Thus, we obtain

1
Ul = |11 0
(q) | >\/E1/)o(q)|>
11) (¢? 10)3 11321 L 0 5.36
+{111) (¢} + q1q-1) — [10) 3qoqu + [1 = 1) ql}2—q2 - ta(0)[0). (5.36)
To determine ¢y we consider first the combination

o1-q0;2-q= (U[()I)QO — ot - O'(—ll)(h) (032)% — o - Og)ql) ; (5.37)
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and obtain for the sample case M; =1

11 11
o1-qoy-qlll) = o1-q §§> o2 q 22>

= (0§"q0 — ofVq_1 — 0¥ l‘h)‘ > (700 = o1 I_U(QI)ql)‘;;>

1 1

- (OJL8, a2, a1

11 1 1 1 1 11
_ 2= I I -
= B 22> 22> fq°q1<‘22> > 2>2+‘2 2>1 22>2>

T

@373/, 12 2/,

= g [11) — 2qoqs [10) + 247 |1 — 1), (5.38)

where ‘% + %> (i = 1,2) are the spin states of the individual nucleons. This equation
)

(5.38) contains actually the [ = 0 admixture of the deuteron wave function as can be seen

by projecting on Yg(q). It can be removed by subtracting 3¢* [11) from it. This yields

2
< "qo-q— gq > 11) = 3 (‘I(z) + C]qul) |11) — 2qoq1 |10) +2¢7 [1 — 1) . (5.39)

Compared to the corresponding terms in Eq. (5.36) it follows that this tensor operator

o1 qoy - q— 5¢° is already the correct form for ¢, up to some factor. Hence, ¥}(q)

results as
Wi@) = {——vola) + [ a0sa - 52| o [5ota(0) { 11)10)
d \/E 4 2
= {0@+ [ a0z a- 5] b o), (540
where
do() = ——=vo(a) (5.41)
o\d = \/E old .
- 3 1
= —— 5.42
The expression in Eq. (5.40) was derived for M, = 1. Similar derivations for My = 0
and My; = —1 show that this form with the corresponding spin state applies also to
Md - 0, —1:
0 1
Vi(q) = [10) \/—wo(Q) 0)

+{|11>3<Joq 1= [10)2(¢5 + q1g-1) + [1 = 1) 3goq | \/71#2 ) 10)
= {0+ [o1-aoea— 5] la)} 10)10) (5.43)
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W) = [1-1) j4_7rwo<q> 0)

+ {|11> 3¢°, — [10) 3gog 1 + [1 — 1) (¢ + Q1q71)} 2%]2\/;%@) 10)
= {h@+ o Gala)f 1= 1)[0). (5.44)

Thus, we obtain the deuteron wave function in operator form in momentum space as

‘I’yd(q)z{wo(q) [ qoy - q——q] ()}|1Md>|0> (5.45)

"qog - q——q

In the above expression the positive parity of the deuteron becomes obvious, since
\Iffiwd(q) = \Ifilwd(—q). A corresponding expression in coordinate space can be found in
Ref. [47], which in fact goes back to the work of Rarita and Schwinger in 1941 [46].

We evaluate now the normalization of this deuteron wave function in operator form

given in Eq. (5.45). Using

(Mgl o1 qos-q[1My) = {Zi_qu %Z:)ﬂ (5.46)
and
[daiio - aoyalin) = T (5.47)
we obtain
(wi| wity = [ da|w)(a)
= [ da (0l M {Go0) + [ aos - a - 52| dala)}
x{wq) o1 as-a - 52| o)} 1) 0
= [aal@@+ i@ o ac-a- ]
+2 () ala) (LM [0 - a0 a = 5] (1000}
= /dq{%(Q)
+5(q) (1My| [(01 1qo3-q)° - §q201 'qo2-q+ éq‘*} |1Mg)
42 0o()a(e) (WMl [ a2 -0 = 567 11010}
= /dq{%(Q) +13(g) (1Ml [q4 - %qzm-qaz g+ %q“] [1Ma)
2 0o(@)a(e) (1Ml [ a2 a = 367 1100}
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= [dalita) + 50" B0 - S(@)ia(a)
+2 [To(a)ala) - 5030|101 - a o - a1
= an [ daa? {FR0) + 500 — 2 a)dl0)
+ [ola)iale) - 30030 30}
= dr /Ooo dq ¢’ {wé(q) + gq%%(q)}
= [T dag (w50 + v} (548)

Thus, we get the standard normalization of the partial wave components of the deuteron

wave function.

5.2.2 Analytic Angular Behavior of the Deuteron Wave
Function

In this section we would like to reevaluate the deuteron wave function components ¢} %(q)
defined in Eq. (5.5) by making use of the momentum representation W5"(q) of the
deuteron state given in Eq. (5.45). The operator o1 - qos - q in Eq. (5.45) can be ex-
pressed in terms of the total helicity operator S - q, which is more appropriate for the

momentum-helicity basis |q; @SA;¢)™, as
o,-qoy-q=2(S-q)* ¢ (5.49)

Thus, the deuteron wave function components in the momentum-helicity basis are given

as

o) = ' (qalA; 0 W)
= (0 (@1A| ({al + (—a]) ©")
= 2(0| (@1A| }"(q)
= 201@A {dola) + [o1-ao-a- | vata) | 10 0)

~ 2l {y ()+{2<s-q>2——q} 2(a) | 1142

= 2{ule) + [222 - 5] o)} (@12 101

= 2{dola) + 247 = 3] #0.(@)} DY a(000)

_ 2{ . :2A2—§: } eMavgl, () (5.50)
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with the analytic angular behavior e**#?d}, (), where the d-matrix is explicitly given
as [31]

l4+cosf _ sinf 1—cos¥
2 V2 2
1 _ sin 6 sin 0
dp,a(0) = 5 cost =0 | (5.51)
1—cos 0 sin @ 14-cos 6
2 V2 2

We define for the radial parts of the wave function components an angle independent

function ®,(q) as

Pr(q) = tholg) + {2/\2 — %} 7*a(q)
1 1

= etla)+ [3A7 - 2| T

(From now on we call this function the amplitude ®,(¢).) Hence, the deuteron wave

¥2(q)- (5.52)

function components in the momentum-helicity basis can be expressed as

eri@) = 2B, (q)e™0d}, 4 (0)
= o\ (q,0)eMa?, (5.53)

The factor of 2 is kept in the expression for later convenience, and gp%d (q,0) are the two-
dimensional wave function components defined in Eq. (5.9). The normalization of this
amplitude @, (¢) can be obtained by inserting Eq. (5.53) into Eq. (5.14):

00 1
<\I’£lwd \Ijigwd> = 27r/0 dqq2 /_ldcosﬁ {2(1)%(61)‘1}\@1(9)‘1}\@1(9) +©3(Q)d}wd0(9)d}wdo(9)}

= %Awdqqz{%?(q)%ﬁﬁ(@}, (5.54)

which agrees with Eq. (5.48). In the last step of Eq. (5.54) we have used the orthogonality
property of the d-matrices:

1 A .
/ deosOd ()2 (6) = ———6, - GO (5.55)
-1

p1ma p2msa — 2]-1 +1 J1j2Ypn1pe

Let us now return to Section 5.1.4 to evaluate some behavior of the results displayed
in that section.

The wave function components ¢} (g, #) obtained from numerically solving of Eq. (5.22)
display an angular behavior, which should be compared to the analytic one. With the
help of Eqgs. (5.53) and (5.51) we can express o) *(g,0) showing their analytic angular

behavior as

Mg=0 : ©5(q,0) = 2P(q) cos (5.56)
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0)(q,0) = V2®,(q)sin b (5.57)

M;=1 0s(q,0) = —V2B4(q) sin 0 (5.58)
p1(g,0) = @1(q)(1 + cos 0) (5.59)

Mg=—-1 : ¢5%q,0) = V2®y(q) sin (5.60)
¥1 ' (q,0) = P1(g) (1 — cos ). (5.61)

Clearly, the numerical angular behavior displayed in Figs. 5.1 and 5.2 agrees with the
analytic one.

At small ¢, where the maxima of |¢Y(¢,0)| occur, the amplitude ®,(¢) are
determined dominantly by the s-wave. Therefore, the d-matrix determines how the
maxima change with A and M,. This explains why the maximum of |g0%j (q,0)| is larger
than that of |90/1§/[7§Md(q, 6)|. The expressions in Eqs. (5.56)-(5.61) show that the ratio
o8 (@ O)maz | Prnr, (€ 0)maz] is exactly v/2.

Using Eqs. (5.56)-(5.61) the analytic angular behavior of the deuteron densities given
in Eq. (5.18) can now be derived. We find for M, =0, 1

1 1
pPla) = 5i(q)sin® 6+ B(g) cos® 6 + S P(g) sin’(r — 0)
= ®*(q)sin® 0 + ®7(q) cos* 0 (5.62)

1 1 1
p(q) = Z@%(q)(l + cos6)* + 5(1)3((]) sin® 0 + Z@?(q)(l + cos(m — 6))?
1 1 1
= Z@f(q)(l + cos 0)? + §®g(q) sin? 0 + Z@%(q)(l — cosf)?

1 1
= 5<1>§(q)(1 + cos? 0) + 5<1>3(q) sin® ¢ (5.63)

pta) = %@f(q)(l —cos0)? + %@3((1) sin? § + i@f(q)(l — cos(m — 0))?

1 1 1
= Z@%(q)(l — cosf)? + 5@3((]) sin® ) + Z@%(q)(l + cos #)?

= p'(a). (5.64)

For small ¢ , where ®(q) and ®,(q) are almost identical, p°(q) and p*!(q) are very much
the same to each other and are perfect spheres. For larger ¢ these spheres are deformed
according to the ratio |®y(q)/®P1(q)|-

5.2.3 One-Dimensional Deuteron Eigenvalue Equation

Recalling the derivation of the deuteron eigenvalue equation given in Eq. (5.22), we notice

that there we have been able to separate out the azimuthal integration. Since we now know
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the angular behavior of the deuteron wave function components, we see that analytically
the equation is separable into the angular and the radial parts. Finally we need to solve
only the radial part of that deuteron eigenvalue equation.

Inserting Eq. (5.53) into Eq. (5.21) gives

(fﬁ _ Ed) r(q)dl, 1 (6)

m
+ [ dgem o= {2y g, @) ¢ by (0) + VA (0, @)l o)} = 0.
(5.65)

This is an equation, which is valid for any direction of q. For q = z the azimuthal

dependencies of the potential can be factored out similarly as in Eq. (3.53) to give
Vidh(az,d) = e ViR g, ¢, 0), (5.66)

and therefore, the equation is simplified by choosing this direction:

v ne (1
+ [ g LDV g, 01 (0 )y, (0) +

: TV 0, 0) ()b ()} =0

(5.67)

4

Equation (5.67) survives for M, = A, and this leads to

e

+7r/ dq ’2/ deos 0 {VaiS (q.¢',0)®1(q') by, (6)
+ gvﬁi%(q, 7, 0’)<I>o(q’)di4do(9’)} =0.  (5.68)

This condition My = A for the equation to survive does not exclude the existence of its
solution for My # A. In fact, the solution for My # A at this specific direction q = z
vanishes, as displayed in Section 5.1.4. By choosing M; = 1 and 0 we have a closed system
of two coupled equations for the amplitudes ®; and ®,.

The cos ' integration can be worked out separately and independent of the amplitudes
®,(q"). Defining

Vit (a, / deost Vi (a.q 0) by, 0 (0), (5.69)

equation (5.68) is reduced to a set of two coupled equations in one variable, namely g¢:

2 1
<q— —~ Ed) Dy, (q) + 7r/ dq " {Vﬁ(q,Q’)@l(Q') + 5%%%(%(1’)%(61’)} =0. (5.70)

m
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As in the evaluations of Eq. (5.22) in Section 5.1.4 we employ the power method to
solve this set of Eq. (5.70). We also take the same Gaussian-Legendre quadrature points
for the ¢'- and cos #'-integrations. For the NN potential Bonn-B we obtain the deuteron
binding energy 2.224 MeV and for the AV18 potential 2.225 MeV. The amplitudes ®(q)
and ®,(q) are displayed in Fig. 5.4 for the Bonn-B and in Fig. 5.5 for the AV18. The
figures show that for small ¢ the amplitudes ®,(q) and ®;(q) are of the same magnitude,
and both fall from their largest values by about one order of magnitude at ¢ ~ 200 MeV /c.
The amplitude @, (g) has its first node at ¢ ~ 300 MeV /¢, whereas ®y(g) has its own first
node at ¢ ~ 900 MeV /c for the Bonn-B and at ¢ &~ 1000 MeV /c for the AV18. Within the
momentum range shown the magnitude of ®y(¢) and ®,(q) for the Bonn-B in general fall
off with the same rates, whereas for the AV18 the magnitude of ®;(¢q) decreases slower
than that of ®y(q).

5.2.4 Connection to the Standard Partial Wave Representation

In Section 5.1.3 we have started to connect the deuteron wave function components in
the momentum-helicity basis to the partial wave projected components of the deuteron
state. We have obtained Eq. (5.27), which left the determination of some deuteron
quantum numbers for numerical calculation. With the analytic angular behavior of
©oa(q,0) given, we can continue deriving the connection and find the remaining

quantum numbers. Inserting Eq. (5.53) into Eq. (5.27) yields

dla) = 2/m+ 1) [ deost {CULG001) ()1 (0)dhy, (0)
+ 50115 000) 0 (0) @00}y o)}

= /@ D {CU 0B (0) + SCUG 008}, (57

in which we have used the orthogonality property of the d-matrices given in Eq. (5.55).
It turns out that the connection exists only for a total angular momentum ;5 = 1, and the
Clebsch-Gordon coefficients allow only [ = 0 and [ = 2. Thus, we obtain for the s and d

waves

Gla) = SVA{2(0) + Do(0)) (5.72)
Gala) = SVIT(D1(0) — Bofa)}, (5.73)

which is consistent with Eq. (5.52).
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Figure 5.4: The absolute values of the amplitudes ®y(q) and ®;(g) in units MeV 1 for
Bonn-B.
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Figure 5.5: Same as Fig. 5.4, but for AV18.
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5.3 Probability Densities for Different Spin Confi-

gurations

In this section we describe the internal spin configuration of the deuteron with the help of
the deuteron wave function in operator form given in Eq. (5.45). As example we choose
an overall polarized deuteron with M, = 1. Cases of interest are if (1) both nucleons
have their spins up, (2) both nucleons have their spins down, (3) one nucleon has spin
up and the other has spin down, (4) one nucleon has spin up and the other has arbitrary
spin orientation and (5) one nucleon has spin down and the other has arbitrary spin
orientation. The probability densities for these five cases are given below in terms of the

deuteron s and d waves.

1. probability density for both nucleons having their spins up:

phla) = W@y [1+0] 5 (1402 wia)

— i<11|{¢o(Q)+{al-qaz q——q}wz( )}
x [1+ 0] [14 0 ]{1/}0() [ qoy - q——Q] ()}|11>

_ %wg(q) (1] [1+0P] [1+ 0] 11)

+700(@2(0) (11 [1+ 0] [14+ 0] [or - qrs - a - 52| 1)
+ilE2(Q)ZE0(Q) (11 [0'1 Qo q— %f] [1 +o! )] [1 + 0! } |11)
+E¢S(Q) (11 [0'1 "qO2-q— %f] [1 + 021)]

< [1+0%] [or-aosa— 50| 1)
= G0+ 207 (05?0 — L) in(ainla) + o' (o0 — 1) (o)
= {0+ 25 (oo 1) vlart + 5 (o0 1) 0]
= ﬁ{wa(mm@mqwo(qw) + Vi w%(q)}. (5.74)

2. probability density for both nucleons having their spins down:

) = \p;*(q)%[l—agl>]%[1_ag2>] v} (q)
- %(11|{1/_)0(q)+[ "qoy- q——q]wz( )}

< [1= o] [1= 0@ {ila) + [01 - a0 a - 52| e} 1)
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= %z/ﬂ( ) (11— oW [1= o] |11)
1 00(@)Ta(a) (1] [1 = 0] [1 = 0] [0 a0y - a — 57| 111)
Faola) (1) o1 @ -a— 2] [1—0®] [1 o] 1)
+§w (9) (11] {01 .qoy-q— %qﬂ [1- 0]

1
X [1_‘722)} {0'1'(10'2 q——q } |11)

= ¢*sin® 04 (q)
9

_ Y sdp 2
= oot 0u(o)

3

= SYR(@Y 2(@uE0). (5.75)

3. probability density for one nucleon having spin up and the other having spin down:

.1 1
i@ = i@y [1+ol] 3

5 [1- 0] wi(a)
= LG + [orao a7 )
x (100 [1 = o] {Go(@) + [or - a2 - a = 3] dala)} 1)

= (5@ [1+0] [1 - o] 1)

+200(@) () (1] [1 +00] [1= 0] [0 - aery - a - 52| 111)
+10@0(@) (1o a0y - a - 57| [14+00) [1 0] 1)
1

_ 1

+3030) 11l [or a0z a = 5¢*] [1+ o)
X [1—022)] [ -qoy - q—gq] 111)

= ¢*cos? fsin? 02 (q)

9
= g5, C0S 20 sin” 0 3 (q)

3

= V(@Y (@05 (0) (5.76)

4. probability density for one nucleon having spin up and the other having arbitrary

spin orientation:
piy(@) = ‘1’5*( )%[1+”(1)] y(q)
— 11|{1/}0q +[a Qo - q——q]%( )}
<[t o) {dola) + [o1-ao - a - 32| duta)} 1)
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3(g) (11] [1 4 o] 11)

Bl (11 [1+00] [0 -qos-a - 5] 1)

+30a(@)bola) (1] [ - a - 5] [1+ 0] 1)
m-qaz-q—%qﬂ [1+0V] {0'1'(10'2 q—lq 11)
o(a) + 2¢” (cos 0~ —) Yo(a)y2(q)

2
+q* { (COS2 0 — %) + cos? @ sin® 9} 13 (q)

% l 2(q) + % ((:052 6 — %) Yo(q)¥2(q)
+§{<00329—%> + cos? fsin? 0}1/) (q )]

pir(@) + py (). (5.77)

5. probability density for one nucleon having spin down and the other having arbitrary

spin orientation:

(1) (a)

e )5 [1 - 0] wi(a)
11|{¢0(q)+ { Qo - q——q } ba(q )}
[1—0 ]{ o(q) [ 01°q02- q——Q] Va(q )}|11>
S03(0) 1] [1 = o] 11y
5 00(@) () (1] [1 o] [0 - aos-a— e 1)
ba)ola) (1] o1 ag-a— 22| [1 o] 1)
+%¢%(Q) (11] [01 ‘qoy-q - %QQ] [1—00] [01 "qos-q- %qZ 11)
q* sin® 043 (q)

9
375111 20 45(q)

PTL(Q) + P¢¢(Q)- (5.78)

— N

The angular dependencies of all these functions result from terms containing the

deuteron d-wave, which is obvious since the s-wave is spherically symmetric. Thus, these

probability densities for five different internal spin configurations of the deuteron exhibit
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combinations of angular behavior owned by the spherical harmonics functions of orbital
angular momentum [ = 0 and [ = 2. These probability densities are shown in Figs. 5.6-
5.11. In Figs. 5.6, 5.8 and 5.10 the left side displays the probability densities as functions
of ¢ and cos #, whereas the right side displays them as functions of ¢, and ¢,. The contours
in the the figures on the right side represent equidensity curves in the ¢,-g,-plane, which
rotated around the g¢,-axis form three-dimensional images of the equidensity surfaces. All
the figures shown results from the calculations based on the Bonn-B potential. Since the

AV 18 potential produces results of similar shapes they are not displayed.

Fig. 5.6 shows the probability densities for the first two cases. The figures (a) and
(b) display pi,(q), while those figures (c) and (d) display pj,(q). The probability density
pi(q) has its maximum at q = 0, telling that the configuration where both nucleon have
their spin up occurs most probably when the nucleons are at rest with respect to each
other. In the momentum range shown p}T(q) has a spherical shape, since according to
Eq. (5.74) it is dominated by the s-wave. The probability density ph(q) has a different
shape. It vanishes at =0 and reaches two maxima at |gmne| &~ 100 MeV/c along the
qp-axis (0 = 7). This tells that for the case where the two nucleons have their spin down
they have most probable momenta back to back and right to the polarization axis of the
deuteron. If the equidensity curves in Fig. 5.6(d) are rotated around the g,-axis they will
exhibit a toroidal shape of the equidensity surfaces of this probability density, as shown

illustratively in Fig. 5.7, where two equidensity surfaces are displayed.

In Fig. 5.8 we show the probability density given in Eq. (5.76) for the case where
the two nucleons have opposite spin directions to each other. This probability density is
given solely by the d-wave and a function of the angle #. Thus, ph(q) has four peaks
of equal hight in each quadrant of the ¢, — ¢.-plane at |q,| = [¢.| = Gmas cos(}). Hence,
for this spin configuration it is most probable that the two nucleons have momenta back
to back and pointing at # = 45°. The rotated contours in the ¢,-¢,-plane around the
q.-axis lead to double toroidal structures. This is shown illustratively in Fig. 5.9, where
two equidensity surfaces are picked and displayed. The inner tubes represent surfaces of

higher density compared to the outer ones.

Fig. 5.10 shows the probability densities for the last two configurations given in
Egs. (5.77) and (5.78). The figures (a) and (b) display p}, (q), whereas the figures (c) and
(d) depict pjg(a). For the momentum range shown pi;)(q) behaves very
similarly as p},(q) displayed in the figures (a) and (b) of Fig. 5.6. This can be understood
as that pi,(q) is larger than pj (q) and thus dominates. The probability density pj(q)
has the same maxima as that of pj,(q) shown in the figures (c) and (d) of Fig. 5.6(d),
but a slightly different angular behavior. For a fixed ¢ the changes of pi(l)(q) with 6 are
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slower than that of pj, (q). The 3D-image of p|(;)(q) is presented in Fig. 5.11, which looks

similar to the one shown in Fig. 5.7.
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a, [10% MeV/c]

g [10% MeV /c)

Figure 5.6: The probability densities pi,(q) in units 107 MeV~? ((a) and (b)) and py, (q)
in units 1071 MeV~? ((c) and (d)). The contours represent equidensity curves in the

q.-q.-plane.
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Figure 5.7: Two selected equidensity surfaces of ph(q). The image is created by rotating
two of the equidensity curves of Fig. 5.6(d) around the ¢,-axis. Note that the g¢,-axis is

stretched out with respect to the other two axes.
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a. [10% MeV/c]

a [10? MeV/c)|

Figure 5.8: The probability density pi (q) in units 107" MeV~2. The contours represent

equidensity curves in the ¢,-g,-plane.
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Figure 5.9: Two selected equidensity surfaces of ph(q). The image is created by rotating
two of the equidensity curves of Fig. 5.8(b) around the ¢,-axis. Note that the g¢,-axis is

stretched out with respect to the other two axes.
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a, [10% MeV/c]

a [10% MeV /c)

a, [10% MeV/c]

—2 —1 0 1 2

(d)

g [10% MeV /c)

Figure 5.10: The probability densities pf)(q) in units 107° MeV~ ((a) and (b)) and
piy(@) in units 1071 MeV~? ((c) and (d)). The contours represent equidensity curves in
the g,-q.-plane.
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L".

Figure 5.11: Two selected equidensity surfaces of Piu)(Q)- The image is created by
rotating two of the equidensity curves of Fig. 5.10(d) around the g¢,-axis. Note that

the ¢,-axis is stretched out with respect to the other two axes.



Chapter 6

THREE-DIMENSIONAL
FORMULATION FOR THE
NUCLEON-DEUTERON
BREAK-UP PROCESS

In the previous chapters we described the 2N system treated in a 3D formulation as
derived in Chapter 3. The applications in Chapter 4 for NN scattering and in Chapter
5 for the deuteron agree with experimental data and standard PW calculations. The 3D
formulation allows to calculate at lower as well as at higher energies with a fixed number
of LSE’s, whereas in a formulation based on partial waves the number of LSE’s increases
with the energy.

In this chapter we extend the 3D formulation without partial wave decomposition to
three-nucleon (3N) scattering. This can briefly be summarized as follows. Calculations
of 3N scattering take as input the off-shell NN T-matrix elements corresponding to the
process in the 2N subsystems. These off-shell NN T-matrix elements are given through
the 3D approach presented in Chapter 3. Finally, the amplitude for the 3N scattering can
be calculated directly as a function of Jacobi momenta describing the relative motion of
the three nucleons. We take the Faddeev’s scheme [1] for this purpose, which is derived for
handling a three-particle system. Moreover we use only the lowest order of the multiple
scattering series provided by the Faddeev equations.

We choose one of the 3N scattering channels, the nucleon-deuteron (Nd) break-up
process. We begin with a brief review on this process. As in the 2N case, this review is
meant to give a short summary of necessary formulas and definitions of some terminologies

and quantities used in the following text.

105
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We consider only the leading term of the break-up amplitude, since we are interested in
higher energies and would like to see then whether the leading term is sufficient to describe
the process. From now on we mean by the break-up amplitude (or simply the amplitude)
the leading term and by the full break-up amplitude (the full amplitude) the leading term
plus the rescattering terms. After the brief review on the process we derive the expression
for the break-up amplitude in terms of the T-matrix elements in the momentum-helicity
basis.

Up to this point the formulation is nonrelativistic. But in calculating higher energies
it is natural to expect some relativistic effects. Therefore, we proceed with including
relativistic correction in our formulation by introducing relativistic kinematics, which is
based on the work in Ref. [51].

6.1 Review on the Nucleon-Deuteron Break-Up Pro-

cess

This brief review covers kinematics, the amplitude, the Faddeev’s equation and

observables of the nucleon-deuteron process. These are given in more detail in, for exam-
ple, Refs. [5].

6.1.1 Kinematics of the Three-Nucleon System in Laboratory

and Center of Mass Reference Frames

In momentum space a 3N system can be described by using Jacobi momenta as illustrated
in Fig.6.1(a). The Jacobi momenta p; and q; describe a 3N system in the c.m. frame and
together with the laboratory momentum K of the 3N center of mass describe the system
in the laboratory frame. Figure 6.1(b) shows the cyclic behavior of Jacobi momenta p;
and q; (i = 1,2,3), which all describe the same 3N system.

For a 3N system, that is a system of three equal mass particles, Jacobi momenta p;

and q; are given as

1 2 1

where k; is the laboratory momentum of the i** nucleon. Thus, p; is the relative mo-
mentum for the 2N subsystem of nucleons j and k (jk-subsystem) and q; is the relative
momentum of nucleon i to the jk-subsystem. These three pairs of p;, q; describe the same

state. Hence,

|p1Q1CY> = |P2(12CY> = |P3CI3CV>, (6-2)
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A
=
~eg
N
O
=
N
N
o
w
N

c.m. frame O3
K P1 Py P2
3 3 3 3
laboratory frame

(a) (b)

Figure 6.1: (a) A 3N system in momentum space can be described in the c.m. frame using
Jacobi momenta p; and q; and in the laboratory frame using the same Jacobi momenta
together with laboratory momentum K of the 3N center of mass. (b) Jacobi momenta

are cyclic and all describe the same system.

where |p;,q;, @) is defined as the free 3N state and « stands for the discrete quantum
numbers of the three nucleons. The relations between different pairs of p;, q; can be
derived to be

Pj = —3Pi — 19 Pk = —3Pi + 1

1

) i,j,k=1{1,2,3} = cyclic.  (6.3)
q; = Pi — 34 dr = —Pi — 3

In the Nd break-up process one has in the final state three free nucleons, and in the
initial state the deuteron being at rest and a nucleon coming with laboratory momentum

K, corresponding to its laboratory nonrelativistic kinetic energy FEj,;, as

klab =/ 2mElab. (64)

Let us choose without loss of generality this incoming nucleon as nucleon 1. Conservations

of total momentum and total energy in the laboratory frame are given by

klab - k1 + k2 + k3 (65)
ki | 345 (ki +ko+ks)®  3¢2  p?
R — + — 6.6
6m+4mjL d 6m +4m+m’ ( )

where Ej; is the deuteron binding energy, qo the relative momentum of the incoming
nucleon to the deuteron, p the relative momentum for the 23-subsystem and q the relative

momentum of nucleon 1 to the 23-subsystem:

2

Qo = gklab (6.7)
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1
2 1
a = g [l—g k)
2 1
= - [k1 — > (s kl)}
1
- k1 - gklab- (69)

In both sides of Eq. (6.6) the first term is the kinetic energy of the 3N center of mass,
which is equal to %Ezab- The other terms sum up to the conserved total energy E., in
the c.m. frame. Thus, , ) )

Ecm:%+Ed:iim+%. (6.10)

This Eq. (6.10) also provides the relation between ¢ and p.

We will consider the inclusive break-up process, where only one nucleon is detected in
the final state, which is in this case nucleon 1. In the experiment the detector is placed
at a certain position and hence the scattering angle 6,4, is fixed. This scattering angle
01ap determines the maximum value ky 4, Of the magnitude of the momentum k; of the
detected nucleon. Equation (6.9) leads to a quadratic equation in k;, with one of the

solutions being

1 1
I{Il = gklab COS glab + \/(]2 - §kl2ab SiIl2 glab . (611)

The other solution with negative square-root term is not considered, since it is not
appropriate to find £y .. Inserting into Eq. (6.11) the maximum value for ¢ accord-

ing to Eq. (6.10) gives

1 1 4
k1 maz = gklab cos Oyp + \/gk?ab (3 4 cos? Oiqp) + ngd ) (6.12)

6.1.2 Break-up Amplitude and the Faddeev’s Equation

Let us define U[{ “ll a5 the full Nd break-up operator. For a system of identical particles

the full break-up operator can be written as
Ul = (1+ P)T. (6.13)

Here P is a permutation operator defined as
P = P13 Py3 + Py3Pss. (6.14)

The first term performs a cyclic permutation, which changes the nucleons’ labels, for

example from (123) to (231), and the second term an anticyclic permutation operator,
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which changes the nucleons’ labels from (123) to (312). That notation Tp in Eq. (6.13)

stands for the Faddeev operator obeying the Faddeev equation for the break-up process

[1]:

Here T is NN T-matrix and G the free 3N propagator given as

1
Go (3% +E> — , (6.16)

q
4m 4 By — Hy

where Hj is the free 3N hamiltonian in the c.m. frame and we have applied the c.m. energy
given in the previous subsection.

Now we consider only the leading term of the full break-up amplitude. This means we
take only the first term of the Faddeev operator given in Eq. (6.15). Defining Uy as the

break-up operator for this special case, we have
Up=(1+P)TP. (6.17)

The Nd break-up amplitude Uy(p, q) is then defined as

Up(p.a) = <qus1ms2ms3717273 Uo QOmng{)‘I’fzwd>
= <qus1ms2m537'17'27'3 (1+ P)TP|qom®, )0 > . (6.18)
Here
|PAms1Msoms3TiT2T3) = QM1 1) |Pmsems3TaT3) (6.19)
is the final not-antisymmetrized free state,
‘qomslT1 Wi > = ‘q0m2178> ‘\Iffiwd> (6.20)

the initial state, in which only the deuteron state is antisymmetrized, mg;, 7; (i = 1,2, 3)
final spins and isospins of the three nucleons, m?, 7 initial spin and isospin of nucleon 1
and ‘\Iféwd> the deuteron state with M, being the projection of its total angular momentum
along an arbitrary z-axis. In the amplitude Uy(p,q) we suppress the initial quantum

numbers as well as the final discrete quantum numbers for simplicity.

6.1.3 Cross Section and Spin Observables

Similarly to Eq. (2.21) for the NN system, the expression for the expectation value

<a&1)0g)0§3)>f of a general spin observable for the Nd break-up process is given as

1{oWoPo) = Ly (o '8,) Tr {Mo(VS,MioWo o}, (6.21)

Ap
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where

= Azp (of,) Tr{Ma\ s, M} (6.22)

is related to the differential cross section summed over all possible final spin states. For
the break-up process the scattering amplitude M is Uy. Here o, (o = 0,1,2,3) are the
2 x 2 matrices given in Eq. (2.16) and S, (p = 0,1,...,8) the 3 x 3 matrices of the
general spin observables for spin-1 particles, in this case the target deuteron. They are

combinations of the matrices of the Cartesian components S, Sy, S, of angular momentum
S=1

) 010 ) 0 —2 O 1 0 O
S, = — 1 0 1 S, = — 0o - S, = 0O 0 O 6.23
\/g Y \/g ¢ t ( )

01 0 0 ¢ O 0 0 -1

(See Ref. [52] for more details.) For the inclusive break-up process one has to sum over

all directions of the relative momentum p, thus,

[dpTr MolVs MTaél)ag)a(?’)
(o0o50") = 2 {od'Sy), { 5TdpT i (6.24)

Ap

We consider cases where the deuteron is unpolarized, hence, S, = Sy6,0 = 0.

Now we take a look at the spin averaged differential cross section and some spin
observables, i.e. polarization, analyzing power and polarization transfer coefficients. Data
for these observables are given in the laboratory frame. Hence, we have to calculate these
observables in the laboratory frame. Though we can first calculate observables in the
c.m. frame and later connect them with the ones in the laboratory frame, we choose
to calculate directly in the laboratory frame. This poses no difficulty. Ref. [53] give
the relations between polarization transfer coefficients in the c.m. and in the laboratory
frames, including the ones with relativistic kinematics.

We use the unit vectors 1, i, §, I', #, §' in the laboratory frame defined in Eqgs. (2.26)-
(2.30), with changes in notations such that ]Aﬁ is replaced by i%b and l%’l by lAcl. Note that
the relation with the unit vectors in the c.m. frame shown in Eqs. (2.26)-(2.30) is not
valid for the 3N scattering. See Ref. [53] for the general formulae. Choosing ke, = # and
k1 in the xz-plane, the laboratory unit vectors in a Cartesian coordinate system are given
by Eq. (2.31).

The spin averaged differential cross section in the c.m. frame for the inclusive break-up

process is given by [5]

d3o 4m pq?
dp I, 6.25
Toda = @05 [dp I, (6.25)
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with
1 N )
Iy=cTr (Mt} = S 3 Us(p, )% (6.26)

ms1msamsam® My

In order to compare with experimental data we need to calculate the cross section in the
Kt

laboratory frame, written as a function of the nucleon’s outgoing kinetic energy F; = 5L

and scattering angle 6,,. Using Eq. (6.9) we get dq = dk;. Hence, the cross section in

the laboratory frame is obtained as

d°o (2! m’pk; 1 5

- ey 6

— = dp|Us(p, k1) 2. 6.27
Ty | dplti(p. k)| (627

ms1mszms3md My
It should be pointed out that p is not independent, but determined by k; via Eqgs. (6.10)
and (6.9).

In the following we give the polarization P, of the outgoing nucleon, the analyzing

power A, and polarization transfer coefficients D;; = %Tr {M(a M (e i)}, where
we suppress the integration over p:
1
- T 5
Py = GIOTT{MM (o)}
1
- 1
= GIOTT{MM oy} (6.28)
1
- A T
A, = GIOTT {M(a n) M }
1
- 1
= GIOTT{MayM} (6.29)
1
L DM o -
Dy, = GIOTT {M(a n)M' (o )}
1
- G—L)Tr{MayMTay} (6.30)
1
Dys = gpTr {M(o-8)M'(0-8)}
1
= G—IOTT {MUQ;MT (04 cOS By — 0, 8in Glab)} (6.31)
1 .
= Mo T
Dys = GIOTT{M(U )M (o - 1)}
1
= —Tr {MUQ;MT (0 sin g + 0, cos glab)} (6.32)
61y
1 o
= . o §
Dy, = GIOTT{M(U Do -8}
1
= 6—IOT7“ {MO'ZMT(O'Q; COS glab — Oy sin glab)} (633)
1 - .
= . o 1
Dy = GIOTT{M(U DMt(e 1)}
1
= —Tr {MUZMT (04 sin g + 0, cos glab)} . (6.34)
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In obtaining Eqs. (6.28)-(6.34) we have applied Eq. (2.31), which gives the laboratory

unit vectors in a Cartesian coordinate system.

6.2 Three-Dimensional Nucleon-Deuteron Break-Up

Amplitude

In this section we derive an expression for the Nd break-up amplitude. Returning to

Eq. (6.18) the amplitude can be written in three terms as

Us(p,a) = U (p,a) + Ui (p, @) + U (p, ), (6.35)
with
UV (p,a) = (pamgmsmgsmors| TP ‘qomslﬁ \Ifﬁl”d> (6.36)
U(@(P; a) = (PAMaMmemsaniTeTs|PioPysTP ‘qomslﬁ \IJM"> (6.37)
U(@(P; a) = (PaAmamemsanTeTs|PisPysTP ‘qomslﬁ \I/Md> (6.38)

For clarity let us label the free 3N states as

lpqa); = being the free 3N state, where nucleons j and k form a 2N jk-subsystem,
discrete quantum numbers listed in « are to be understood in

nucleons’ order i, j, k and i,j,k = 1,2,3 are cyclic. (6.39)

If there is no label, that means the label is 1. Now we consider Ué2) (p,q). We apply the
permutation operator PjoPo3 in Eq. (6.37) to the final state. This gives

Uéz) (Pa Q) =1 <quslms2ms3717273 Py PysTP QOmng{)\I’%>

TP

= 1 <P23P12pqms1ms2m537'17'27'3 QOms17'1 \I’d >

= 3 <qu51ms2ms37'17'27'3 TP|qym), 7| ‘I’Md> (6.40)

In Eq. (6.40) the final state represents a free 3N system, where nucleons 1 and 2 form the
12-subsystem. Now we want to have the final state representing a system, where nucleons
2 and 3 form the 23-subsystem. We use the relation for Jacobi momenta given in Eq. (6.3)
and obtain

[ PAMs1M2Mg3TI TaT3)3 = ‘<—%P - ZQ> <P - %Q> ms2ms3msl7_27_37_1>1 . (6.41)

Hence,

1 3 1
U(gz) (Pa Q) = <<—§P - ZQ) (P - 5‘1) MsoMs3Ms1 ToT3T1 | TP ‘Clom217{)q’yd>- (6-42)
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Similarly for Uég) (p,q) we get

TP|quml,rf @i ) . (6.43)

1 3 1
U(gg) (Pa Cl) = <<—§P + ZQ) <—P - 5‘1) Ms3Mg1Mg2T3T1 T2

Thus, Uél)(p,q), UéQ)(p,q) and Ué3)(p,q) all have the same form and differ from each
other only in values of their variables. Therefore, it is sufficient to work out a 3D expression
for one of them, which we choose Uél) (p,q). The following replacements have to be applied

to get Uy” (p,q) and U (p, q):

1 3 1

for U (p,a) : {r,m}pos — {1,m}psy P — —3P— 74 4= P-4 (6.44)
1 3 1

for Ué?)) (p,a) : {7, m}{1,2,3} — A, m}{3,1,2} p— —513 + Zq q— —p— §q. (6.45)

We begin by inserting twice the following completeness relation for the free 3N system

Z Z /dp/dq|quslms2ms3717273>(quslms2ms3717273| =1 (6.46)

Ms1T1 Ms2Ms3T2T3
into Eq. (6.36). This gives

11 !

Uél)(p,q) = Z Z /dp /dq pqmslms2ms37'17'27'3|T|pqms1m52ms3717273>

M T MM 3TyTy

X ) > / dp” / dq”

"o [y
Mg, Ty mszm Ty Ty
n_.n n__n II>

<P qm51m52m53717273|P|p q mslm52m53 17273

mn_.n mn__mn__n
x (p"q ms1ms2ms37'1 ToTs

qoms17'1 \I’ >

= > X / dp' / ddq’ (aqms71 |a'm )
§171 MM ToTy
<pm52m537'27'3 |T( )| p’m;2m’53T£Té>

X Y > / dp” / dq"”

n 1 n n "1
Mgy Ty MgaMg3Ty T3

(p m52m537'27'3| (q mslTl| P |q,mng{,> |p ms2ms37-é,7':>l*l>

n,_no__n "n_n My
x {q"my 7 5171> (p"mGmim s Uy >
! / !/ ! !
= X [ dp (pmamant [T(E,)| pmlymlyri)
My M3 Ty T
" n__n
X /dp (p'miymiyTs| (amsim| P ‘qom 1T1> P migmigs Ty 75)
m/ m;’sTgTé’

W) (6.47)

X (p"miymisTy Ty
The NN T-matrix is calculated at energy £:

E

p

P2 3 2 2
P -2 (- E 6.48
p- 4m(qo q°) + Eq, (6.48)
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which does not necessarily corresponds to the intermediate relative momenta p’.
The permutation part of Eq. (6.47) is worked out as follows with the help of the

relations for Jacobi momenta given in Eq. (6.3):

(p'miymiaTs| (amam| P ‘q0m2173> |p" Mgy Ty 75)
= (p'[{al Plao) [P") (msimiymigmmyrs| P ‘mslm52m537—107—é,7—f;,>
= 1(P'[{a]ao) [P"); 1 (mamiymigmiTyTs ‘mslms2m53 7y é’T§'>2
+1(P'] (@ ao) [P")s 1 (mamigmigmimry [mdmlfymlrim )

0 n_o_nmn
s3mslm 27'3 172/,

1 1 3
= 1 (p'|(q ‘—p” — 5q0> ‘—513” + Zq°> 1 (Mg1miymi 3T TyTy

+1(p'|{a [p" — %q0> ‘—%p" - %CIO> (Ms1miymiamiTyTs ‘msgmsgm 1T§’T§’Tf>1
= 5 (04 50" = 50) 5 (A D" + 50 St B, Dt B g

+0 <pl + %p" + %%) 0 (q -p'+ %%) Omgymity Ol ym!ty Ot .m0, Ory 7ty Ot r2r O 0
=0 <p' — %q — OIo) 0 <p” +q+ %%) Ormarm, Ormt 0, Ormt .t Oy 7108 1 1081 o

+0 (p’ + %q + Qlo> d (p” —q- %q()) Ormgs iy Oty Ot im0 Oy Oy 61 0. (6.49)

In the last equality we have arranged the delta functions, in such a fashion that it contains

only one integration variable. Next defining

1
a+q 7w =-q- 540 (6.50)

(NN

we get

(p'mlymlg | (amami| P |agmd, 7f ) [p"'milymls s 74)
= 5 (p’ — 71') (5 (p” — 71") (Sm 1m” 5 / 0 (Sm/ m// (57_17_//(5 / 0(5 / //
_|_5 (pl + Tl') 5 (pll _|_ T ) 5m51m” 5m, m,, 5 , 0167_17_//5 / //5 7.0 (651)

7'7'7

Now we insert Eq. (6.51) into Uél)(p, q) in Eq. (6.47), and get

U = X [ dp (pmamuamrs [1(5,)| pimlymlyri)

m m ’7'27'3

/ dpll

H
2m T T3

! n !
8 {5 (0" =) 8 (P" = ') Gunysomty Oy m, Ot gty Oy O 0Oy

s3

+6 (P + ) 8 (" + ) Oynyumtt, Oty O 555}

\pyd>

n__n
<P ms2m 37'2 T3
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= > <pm52ms37'27'3 IT(E,)| 7m2,m/, 37'{)7'§> (' mlgmg T3 ‘\Iffiwd>
Mg Ty

+ Y <pm32m337'27'3 T(E,)| —Wm;2m217573> (—m'mgml, T, ‘\Iffiwd>

My Ty
= Z MgaMsToTs |T(E,)| wm° m'TOT' ('m.mg7'T yMa
= PMsaMg3TaT3 D sl 1 sMs1T 71 d
ml 7!

+ <pm52m5372T3 T (E,) Pos| wm2ym! 1 '> (w'mlma 7' | Pyt ‘\Ilfiw">}

= Y <pms2ms37'27'3 IT(E,)(1 — Pa3)| nglm'TfT'>

!
mgT

X {'mimg ' ‘\Ifilv[d>. (6.52)

In the last equality we made use of the antisymmetry of the deuteron state ‘\Ifilwd>.

The projection (7'm/.mg 7'm ‘\Iffiwd> in Eq. (6.52) is worked out in the following, where
the deuteron state is expanded in partial waves. We recall the partial wave components
Yi(p) of the deuteron wave function, defined in Eq. (5.23).

(m'mimat'n \W") = Z/dp' P mymat'T P/ (11)1Ma; 0) u(p')
= (103 [ !y mtmman 19D )
- ZO(——T #7) (10 S [ ! (i )1 ()
= C< ~0: 7'7'1> /dp' 2w mimg ' (11)1Myg) ()

11
= C<220 771>ZC’ (1115 py My — )
lp

/dp' 12 o |p'l/JJ> <m’sms1 |1,Md - /JJ> wz(p’)
11
= C <220 TT1> ZC [11; s M My — M)Yil‘(ﬁ-,)
I
% <m ms1 |1, Mg — p) 1/)5(71’)

11
= C<220 T7'1>ZC'lll p, My — 1)
lp

x ZC( SSsmamss) Yia () (S, m, 4 mas |1, M = ) ()
11
= C<220 7'7'1>ZC' (1115 p, My — p)
I

1 .
xC' <§§1 mimgy, My — ) Eu(ﬂl)wz(ﬁl)(smﬁmsl,Mru

11 11
= C<220 7'7'1)0(221 mm51>
X Y C(111; My — ml, — mg, m, + my)
l
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XYlde—mg—mﬂ(ﬁJ)wl(W,)- (6.53)

Now we have the first part Uél)(p, q) of the Nd break-up amplitude as

Uél)(P;Q) = Z <Pms2ms37'27'3 T(Ep)(1 — Ps3)| Wmolm'TloTl>
11 11
XO (220 T7'1> C <221 m m51>
X Z C ll]-, Md — ms — Mgy, m; + msl) E,Mdfmgfmsl (ﬁ-,)"/)l(’ﬁl)
]
(=) 1, 0 0
— 7 Z C (551; msmsl> o(Temsmsamgsp|T (E,) |1, —mimymim),

X Z C ll]-, Md - m; — M1, mls + msl) E,Mdfmgfmsl (ﬁ-l)"/)l(ﬂ—l)- (654)
l

Here we meet the physical representation ,(ram3memep|T(E,)|, —1im? m!m), of the
NN T-matrix, defined in Eq. (3.75). These T-matrix elements are connected with the
ones in the momentum-helicity basis, namely 773/ (p, m; E,), as given in Eq. (3.81). Here

we rewrite it again, inserting a Kronecker delta to ensure charge conservation.

a<7—27—3m52ms3p|T(Ep) |7_107 _Tlm.(s)lm;w>a

1 . , 11 11
_ - —i(A dp—A o) o _\SH+t - 4.0
= PPt e e S (1= (-)5*) C <22t TQT?,) % (22t, 2, n)
11
><C’< =5, m52m53A0> c (2 . mslm'A'>
x> d3 A0, dA, (0T (p, 5 Ey). (6.55)

AN

Hence, we obtained Uél)(p, q) expressed in terms of NN T-matrix elements TF3(p, m; )

in the momentum-helicity basis as

(1) ( )2+Tl i(Aodp—Aldr) 11
UO (p7 q) = 4\/_ 7—2+7—3a7—1 —T1 Ze - C 55]‘ m mSl

X Z C(111; My — ms — M1, ms + my1) Yo My—mt—ma (ﬁ")i/)l (W/)
1

11 11
X Z (1 — (= S‘H) C <§§t; 7'27'3> C <§§t; 7'10, —7'1>

Srt
11
xC ( =5 m52m53A0> C (2 S mlym, A’>
x > d3 A0, dA, v (0TS (p, 5 ). (6.56)

AN

These NN T-matrix elements 773 (p, 7; E,) are not the solution of our final LSE’s
in Eq. (3.73). The solution of Eq. (3.73) would be T{3f(p, 7, 0,; E,), which are T-matrix

elements in the momentum-helicity basis with initial momentum in the z-direction and
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without its azimuthal dependence. Therefore, T3 (p, m; E,) have to be connected to

Tk (p, m,0,; E,). This is done as follows. Let us regard T-matrix elements T3y (p, p'; E,)-

We rotate T3 (p, p’; E,) so that the initial momentum points in the z-direction, i.e. p’

becomes p'z:

T (p.pE) = ™ (pipSA|T(E,) [P pSA )™
= "(p;pSA | T(E,)R(D') Ip'2; 25 N5 )™
= "(p;PSNsH R(D)T(E,) [p'z; 2SN )™
= " (RN(®)p; DSAst| T(Ey) [p'2; 2SN )™

The action of R(p’) on state |p; pSA) leads to two successive rotations as
R'(D') [p; pSA) = R(0, —0/, —¢') R(600) |pz; 25A) .
This is evaluated in detail in Appendix F. Here we give only the results:

RU(p') |p; pSA) = € PR(¢"6"0) [pz; 2SA)
— eiAQ |p/l; f)”SA> ,

with
cosf" = cosfcost +sinfsinf’ cos(p — @)
sin "¢ = —cosfsin® + sinf cos @' cos(¢p — ¢') + isinfsin(p — ¢')
GAY Y n=—s DX (¢'6'0) D5 5 (660)
D3 s (67970)
Thus,

Ti (PP Ey) = e ™ ™ (p"p SN | T(E,) [p'z; 2SN )™
= ¢TIV (0",0'%; By)

= WA IS () cos 0" ),

(6.57)

(6.58)

(6.59)

(6.63)

where in the last equality we have applied the relation in Eq. (3.66). The exponential

i(A ¢ —AQ)

factor el can be calculated as

ez’(A’qﬁ”—AQ) _ 7,A’¢” ZN —SD (¢90)D15\17A’(¢,9’ )
DS* (¢//9//0)
g Ee s N5 (0)d5y (9)
eiA’¢”dS (9//)
S s €NOmNdY, (0)d i (0)
A, (67) '

(6.64)
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By inserting the relation Eq. (6.63) for T3/ (p, 7; E,) into Eq. (6.56) we arrive at our
final expression for Uél)(p, q) as

1
—)zn : , 11

U (p,q) = (=) DI S S T ole <__1 m m51>
/2 T 22

X ZC (lll; Md — m; — Mgy, m's + msl) E:Md*mg*msl ('frl)lbl(ﬂ'l)
l

11 11
X Z (1 — (= S+t) C <§§t; 7'27'3> C <§§t; T{), —7'1>

Snt
11
xC ( =5, m52m53A0> c (2 S mlym, A')

x > d3 A0, dA/ w (07) WS ADTTI () 7 cos 0 B, (6.65)

AN

with
cosf' = cosb),cosb, + sinb,sin b, cos(p, — ér) (6.66)
iN ¢ —AQ) Yne_s €N (0,)dRn (0x)
e - ¥ . (6.67)
diA (0)

6.3 Relativistic Kinematics

In this section we introduce relativistic kinematics into the formulation given in the previ-
ous sections. Thus, we reevaluate the maximum value £ ,,q, of magnitude of the nucleon’s
outgoing momentum and the Jacobi momenta p and q. We derive S-matrix elements for
the break-up process and the spin averaged differential cross section. We adopt a formu-
lation in Ref. [51], which is given for an arbitrary two-particle system. Note that in this
section energy means relativistic energy, i.e. £ = v/m? + k2, however, we do not use a
4-vector notation. Thus, here £ is the magnitude of a 3-vector k. This is in contrast to

Ref. [51], where k is a 4-vector and k is its 3-vector component.

6.3.1 Maximum of Magnitude of Nucleon’s Outgoing Mo-

mentum

Conservations of total energy and total momentum for the Nd break-up process are given
by

mq + Elab = El + E2 + E3 El + E23 (668)
klab = k1 —+ k2 =+ k3 = k1 =+ k23, (669)
where mg, is the deuteron rest mass and E; (i = lab,1,2,3) relativistic energies

corresponding to k; (i = lab,1,2,3). In Egs. (6.68) and (6.69) we define E,3 as total
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energy and kos as total momentum of the 23-subsystem in the laboratory frame. The

quantities Fy3 and ko3 are connected by
EY — k3, = M2, > 4m?, (6.70)

which is Lorentz invariant. Here Ms3 is called the invariant mass of the 23-subsystem,
equal to the total energy of the 23-subsystem in its c.m. frame. The minimal value of Mo
is 2m, where the two nucleons are at rest in the c.m. frame of the 23-subsystem. Together
these three equations (6.68), (6.69) and (6.70) determine the maximum value ki 4, Of
the magnitude of the nucleon’s outgoing momentum as shown in the following.

Inserting Eqs. (6.68) and (6.69) into Eq. (6.70) leads to

(Eiap +mag — E1)? — (kjop — k1)? > 4m?
(Eiap +ma)® + E} — 2(Ejp + ma) Ey

—kpy — kT + 2Kk cos by > 4Am
(Biap + ma)® +m? = 2(Ejap + mg)y/m? + ki
_klzab + leabkl COS Glab Z 4m2

Q(Elab + 771,1)\/7‘1“02 + k%

(Epap + md)2 —3m? — kfab + 2k1apk1 cOS Opap
{(Btap +ma)? — 3m” — ki }* + dkip k7 cos® Oiap
+4kiapky €08 Orap{ (Erap + ma)® — 3m* — ki }

A{ ki €08 Oap — (Ejap + ma)” thi

+4kpap €08 Oiap { (Erap + ma)® — 3m* — ki Yo

v

Y

4(Elab + md)2(m2 + k%)

+{(Elab + md)2 - 3’/7’1,2 - kl2ab}2 - 4(Elab + md)2m2 Z 0 (671)
This is a quadratic equations in k;
Ak? 4+ Bk +C > 0, (6.72)
with
A = 4{kl2ab COS2 Hlab — (Elab + md)z} <0 (673)
B = 4klab COS GW,{(EW, + md)2 — 3m2 — kl2ab} (674)
C = {(Ewp+mg)® —3m?> — ki, }> — 4(Ej + mg)*m? > 0. (6.75)

Equation (6.72) is sketched in Fig. 6.2. Thus, £ 4, occurs where Eq. (6.72) equals zero

—B —/B? - 4AC
kl,maw - 24 . (676)

and is obtained as




120 6 Three-Dimensional Formulation for the Nucleon-Deuteron Break-Up Process

AK? + Bk +C

=
=

1,max

Figure 6.2: A sketch of Eq. (6.72).

6.3.2 Jacobi Momenta

A system described by (E, k) in one frame can be described in other frame by (E’, k') by
means of a Lorentz transformation L(v), where v is the relative velocity of the new frame
to the old frame. Thus [51],

(E', k') = L(v)(E, k), (6.77)
where
kK = k+(y—1(k-v)v—vEv (6.78)
E = 4(E—k-v) (6.79)
- (6.80)

TS e

Using Eqs. (6.77)-(6.80) with the appropriate velocity v = u we can transform our 3N

system from the laboratory frame to the c.m. frame and find the corresponding Jacobi
momenta p and q.

First we take the 23-subsystem and derive p. We bring the 23-subsystem from the

laboratory frame to its c.m. frame (the 23-frame) by the following Lorentz transformation

ka3

u = - (6.81)
(B3 p) = (B k) = L(u)(Ez ko) (6.82)
(B3, —p) = (B3 k) = L(u)(Es k). (6.83)

Here k! and E! (i = 2,3) are momenta and energies of nucleons 2 and 3 in the 23-frame.
According to Eq. (6.78) the Jacobi momentum p, defined by the transformation given in
Eqs. (6.82)-(6.83), is given by the following two equations

kos (Fag — Ma3)
ky - ky3) — —2F
Mays k2, (kz - eas) My 2

kos [ ko ko
= ky+ — FE 6.84
27 My <E23 + Ma3 2) (6.84)

k
p = ky+ 23
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kog (Eg3 — Mys) ko3
-p = k ks -kys) — —F
S T T
ko3 ks - ko3
— ok + _ B, 6.85
2 My <E23 + Ma3 ’ (6.85)
where we have used .
1
v = - = M”’. (6.86)
()
23

Instead of two expressions defining p we want to have one expression as a combination of
Eqs. (6.84) and (6.85). Subtracting Eq. (6.85) from Eq. (6.84) leads to

1 kos [ (ko —k3) - ko3
= —(ky — k3) + — (FEy — E3) | . 6.87
P 2( 2 s) 2M 3 ( Eoz + My (B2 3) ( )
Next using
(k2 - kg) . k23 - k% - kg - E22 - E?? - (E2 - Eg)E23 (688)
we get the final expression for p as
1 (B — E3)kos Eo3
= (ko —ks) + ( - 1)
p = k-l 2 Mas Es + Mo
1 1 Ey, — E3
= —(ky—k3) — =k <7> 6.89
2( 2 3) 5 %23 Fos + Mg ( )

Thus, p in Eq. (6.89) consists of a nonrelativistic part (the first term) and a relativistic
correction (the second term), which nonrelativistically vanishes (Ey = E3 ~ m).

The energies F and Ej are given as

EYy=/m2+ k2 = \/m?+p? = /m2 + k{> = E}. (6.90)

We obtain the total energy Ms3 in the 23-frame as

M23 = Eé + Eé = 2E; = 2\/’/7’1,2 +p2 (691)

Using Egs. (6.91) and (6.68)-(6.70) the magnitude of p can be calculated as

~{(Biap +mg — E1)? — (kjap — k1)?} — m?

1
= \/Z{Elzab + mfl + E12 + 2md(Elab — El) — 2ElabE1 — kl2ab — k% + 2klabk1 COSs glab} — m2

1
= 5\/’[713 — 2m? + de(Elab — El) — 2ElabE1 + leabkl COS GW,. (692)
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Here we would like to give some remarks. Since we consider the inclusive Nd break-up
process, we sum over all directions of p, which are independent of the kinematics (F1,k;)
of the single detected nucleon. Therefore, a vectorial expression of p, such as the one in
Eq. (6.89), is not required. It is the expression given in Eq. (6.92) for the magnitude of p,
which is needed. We have nevertheless worked out Eq. (6.89) to complete the presentation.

Now we derive the Jacobi momentum q in a similar way as we derived p. First we
define some notation, namely k| and E] be the momentum and the energy of nucleon 1
in the c.m. frame, ki; and F); the momentum and the energy of the 23-subsystem in the

c.m. frame. Ej is the total energy in the laboratory frame given by
EO = Mg+ Elab = El + Egg. (693)

Here we also define Mj as the total energy in the c.m. frame or the invariant mass of the
system

which is connected to the total energy Fy and the total momentum k;,, in the laboratory

frame as given by the following Lorentz invariant relation
EY — ki, = MZ > 9m?>. (6.95)

Thus, with given Ej and k;4, one can calculate M, as given by

MO = Eg - kl2ab
=/ (ma+ Bu)? — K,
= \/m2 +mg + 2mqEa, (6.96)

which is conserved.
To bring the system from the laboratory frame to the c.m. frame we apply the following

Lorentz transformation

u = klab
Ey
(El,a) = (By,k)) = L(u)(Ey, k) (6.97)
(Egs,—a) = (B3, ki) = L(u)(Eas, kas), (6.98)
with the corresponding ~ factor
1 E
y=m— = (6.99)
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The Jacobi momentum q is given by two equations

q4 = k + l;\l;j (EoklzabMo) (ky - Kyap) — IF\ZJEI
= k + 1]{\2;’ (;; ;rk]l&”o - E1> (6.100)
—q = kg l;\l;; (Eok%wMo) (ko3 - kiap) — l;\l;; Es3
= ko + 1]{\2;’ (Z:lj\% - E23> (6.101)

and the energies ], E}, and M in the c.m. frame are given in terms of the magnitudes

of Jacobi momenta p and q as

E, = ym2+E? = /m?+ ¢ (6.102)
By = M3+ ki = \/4(m2 +p?) + ¢? (6.103)

My = E|+E)= \/m2+q2+\/4(m2+p2)+q2. (6.104)

As in case of p, we want to have one expression for q as a combination of Eqs. (6.100)
and (6.101). Here a vectorial expression of q is needed, since q depends on the kinematics
(E1, ki) of the detected nucleon.

Subtracting Eq. (6.101) from Eq. (6.100) leads to

1 kiap [ (ki — koz) - kygp
— (ki —k
4= 5k 23)+2M0< Fo + M,

Using Egs. (6.93)-(6.95) and (6.102)-(6.104) we get

— (B — E23)> . (6.105)

(ki —kog) kuap = ki — ki
= E} = Ej—m”+ My,

= (B\ — BEx)Ey — {m* + ¢* — (M + ¢*)}
= (B, — Ey)Ey — (B> — Eb°)
= (B, — En)Ey — (E, — Eb) M. (6.106)
We insert Eq. (6.106) into Eq. (6.105) and obtain the final expression for q as
1 Koo ((E1— E)Ey — (B} — E3) M
= (ki -k —(FE, — F
q 2( 1 23)+2M0< Bo+ M, (Ey 93)
1 (E1 — Ea3)kia Ey 1. (E]— Ey)
= (ki —kos) + ( —1)——1%7
5 (ki = keas) 2M, Eo + My 21 (Ey + My)
= (ki —ka) — kg
5 (k= Jeag) 2“’( Eo + M,

E, + E
— kl—klab< L+ 1).

1 6.107
Ey + M, ( )



124

6 Three-Dimensional Formulation for the Nucleon-Deuteron Break-Up Process

In the last equality we have applied total momentum conservation given in Eq. (6.69).

The magnitude of q is calculated using Eq. (6.104) as follows:

2
M; = {\/m2+q2+\/4(m2+p2)+q2}
= 5m? + 4p* + 2¢°

Thus,

M — (5m? +4p%) —2¢* = 2\/4m2(m? + p2) + (5m? + 4p2)g? + ¢*
2

(Mg — (5m” +4p*)} +4¢*

—a{Mg — 5m? + 4p")} ¢ = 4{am’(m? +p*) + (5m® + 4p”)¢* + ¢*}

(M2 — (5m® + 4p)}) — 42> = 16m>(m’ +p?).

1
q= IV \/{Mg — (bm? + 4)02)}2 — 16m?2(m? + p?),
0

+2\/4m2 (m? + p?) + (bm? + 4p?)¢? + ¢*

(6.108)

(6.109)

where M, is given in Eq. (6.96). Equation (6.109) also shows the relation between ¢ and

p, if relativity is taken into account.

Now let us consider the initial situation and find out the Jacobi momentum qg, the

energies £, of the incoming nucleon and E), of the deuteron in the c.m. frame. Replacing
in Eq. (6.105) ky with kg, Ey with Ejp, kog with zero and Esz with my the Jacobi

momentum qg is given as

dqo =

Using Eq. (6.79) Ej,, and E/, are given as

/
Elab

2My \ Ey + M,
ki Eg — ]\102
2My \ Ey + M,
ko
2l—MI; (Eo — Mo — (
ki,
2‘—]\4’_; (2mq — M)
E, k2,
V(B — o
Mo( tab = )

1
ﬁ(Eﬁw + maLia — ki)

0

1

ﬁ(mZ —+ delab)
0

Ey
—1m
M,

1

_— (Elab —+ md)md.

M

(6.110)

(6.111)

(6.112)
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Hence, Ej,;, and Ej sum up to My = E] + E), as required by total energy conservation in

the c.m. frame.

6.3.3 S-Matrix and Cross Section

Here we derive S-matrix elements in the lab frame by using relativistic kinematics and
connect with the Nd break-up amplitude. We neglect the boost effects on the magnetic
spin quantum numbers, in other words we do not take Wigner rotation into account.
From the S-matrix elements we derive the spin averaged differential cross section by using
the standard relativistic time-dependent scattering theory.

Suppressing all discrete quantum numbers we define S-matrix elements in the labora-

tory frame as
S(kl, kQ, k3) = <k1k2k3|5|klabkd> (6113)

and in the ¢.m. frame as

S(p,a) = (palS|ao) = (palS|ao)- (6.114)

One has to bear in mind that there is the deuteron state |¥,) in the initial state in the
c.m. frame, which is here suppressed. The deuteron laboratory momentum k; is given
for clarity though it has a value of zero. In Eq. (6.114) p, q, qp are the Jacobi momenta
given in Egs. (6.89), (6.107), (6.110), respectively. The state |kikoks) is related to |pq),
and the state |kjkq) to |qo), as

kikoks) = [ki)[koks)
%(k2;k3)|k1>|Pk23>

(ka, ks)J % (K1, kas) [pa(ky + Kas))

(K, k3)J 7 (ky, ko) | pa) [y + kas) (6.115)

(Kiab, ka) |[dokiap)

(Kiab, ka)|90) | Kian) - (6.116)

[SIES
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\kiapka) =

[SIES
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7
= J:
J” )
= J )

The Jacobian J(ky,ks3) of the transformation in Eq. (6.115) from variables (ko,ks) to
(p, ko3) is given as [51]

0(ko, k3)
9(p, ka3)
where the last equality results by means of Eq. (6.91) for My;. Similarly, the Jacobians
J(ki,ko3) in Eq. (6.115) and J(kja, kg) in Eq. (6.116) are given as

‘ O(ky, kos)
O(q, kg + ko)

BBy My AByE
FEo3 ELEL  FEozMos'

T(ks, k3) = ‘ (6.117)

_ E\Eyy M, (6.118)

Jlade) = B EiE,
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0(kiap, kg)
O(do, kiap)

One therefore arrives at the relation between S(ki, ko, k) and S(p,q) as

— Elabmd MO (6 119)
By Ejky '

J(Kiap, ka) = ‘

S(ki ko ks) = (kikoks|S|kiapka)
= T2 (ko k)2 (o, ks) T E (Kua, Ka) (Ko + Kos | (Pt S o) ki)
= 0(ky + kas — Kuap) {J (Ko, ks) (ki Kas) (K, k) b2 S(p, @)(6.120)
where the delta function ensures total momentum conservation.
We proceed to connect S(ky, ko, k3) with the amplitude Uy(p, q), defined in Eq. (6.18).

In fact Up(p, q) is the T-matrix element for the Nd break-up process, which is related to
S(p,q) as given in Eq. (2.5), but without the first term. Thus,

S(p,q) = —2mid(Eq + Ey — By, — Eg)Uo(p, ). (6.121)
Inserting Eq. (6.121) into Eq. (6.120) leads to
S(ki, ko, k3) = —2mid(k; + kog — kjap)0(E] + Ey — E},, — E))
x {2 ko) (ki o) S (ki k)2 Uo(pr). (6.122)
Next we insert into Eq. (6.122) the identity®
0(ki + koy — kiap)0 (B + By — Ejyy, — Ep)

= 0(ky + kos — kiap)0(Ey + Egz — Ejgp — my)
" El+E,+E|,+ E}
E1 —+ E23 + Elab + md’

(6.123)

!The identity in Eq. (6.123) can be proven as follows. Take E’ and E as total energies in the laboratory
frame, K’ and K the corresponding total momenta, M' and M total energies in the c.m. frame, related
as

E? -K”* =M" E* —K? = M>.
The energies E', E, M' and M are required to be positive. Hence, (S(M'2 — M?) can be evaluated as
O(M'—M) oM +M) §M —-M)

12 a2y r_ ' — —
o(M M) =6((M" —M)(M' + M)) N + 007 — M| MM
and similarly
0(E'— E)
E?_py=22 "7
o ) E'+FE

Using §(K' — K) to fix the momenta to be K’ = K one obtains

S(K' —K)§(M' — M) = §K' —K)§(M'?> - M?)(M' + M)
= §(K' —-K)§(E? -K” — (B> - K?)(M' + M)
= §(K' —K)§(E — E*)(M' + M)
_ K —K)(E - B MY

E'+E’
which proves the identity given in Eq. (6.123).
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and this gives

S(kl, kg, kg) = —271'@6(1(1 + k23 — klab)é(El + E23 — Elab — md)
i+ By + By + B
E1 + E23 + Elab + mgq
_1
X {J(kg, kg)J(kl, k23)J(klab7 kd)} 2 Ug(p, q) (6124)

As the final step to simplify the expression we define a function I'(p, q) as
E\+FE,,+ E,, + E}
Ey + Eos + Ejgp + my
~ 2M ( AEyE3 EvEoz My Egymg My >_‘
0E, \ ExMy; E, E|\Ey E, E|,E
My B\ Eys Bl Eg
AE\EyE3Eygymg’

M

I'(p,q) {J(ko, k3)J (ki, koz)J (Kyap, k) }

M

(6.125)
and thus obtain the relation between S(ki, ko, k3) and Uy(p, q) as
S(kl, kg, k3) = —271'@5(1{1 + k23 — klab)é(El + E23 - Elab — md)F(p, C]_)U[)(p, q) (6126)

At this point let us return to Uy(p, q), which has been derived in Section 6.2 nonrela-
tivistically. To achieve more consistency with the relativistic kinematics being introduced,
the amplitude Uy(p, q) is calculated using relativistic values of its kinematics variables.
These variables are the Jacobi momenta p, q, qo and the energy, for which the NN
T-matrix elements are calculated. This is the kinetic energy in the 23-subsystem. Take
for example Uél)(p,q), given in Eq. (6.65). The Jacobi momenta p, q, qo are given in
Egs. (6.89), (6.107), (6.110), respectively. The energy E,, for which T3 (p, 7, cos0'; E,)

is calculated, is given as

E, = Mys — 2m = 2y/m? 4+ p? — 2m, (6.127)

different from the nonrelativistic one, given in Eq. (6.48). In Eq. (6.127) 2m is the rest
mass of the 23-subsystem, thus, E, is the kinetic energy in the 23-subsystem.
Now we derive the cross section using the standard relativistic scattering theory. The

delta functions in Eq. (6.126) can be evaluated, with the arguments being zero, as

0(k1 +kog — kyap )0 (Ey + Eyz — Ejgy — my)
— (21)3 / dx e_i(k1+k23_klab)'x2i / dt ei(E1+E23_Elab_md)t
m Vv T™JT
1
- / dx / dt
@2mtl T
VT
(2m)*’

(6.128)
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where V and 7 stand for the whole normal space volume and time. Hence, the squared

absolute value of the S-matrix element S(k;, ky, k3) is given as

1S(ky, ko, k3)|* = (27m) 26(ky + koz — kiap)I(E) + Eoz — Ejgy — my)
xI(p,q)|Us(p, a) PVT, (6.129)

and the transition rate W from initial to final state per unit volume results as

|S(k17 k27 k?))|2

VT
= (27)725(ky + Koz — kiap)0(Ey + Eoz — Ejy — mg)2(p, a)|Us (P, )| (6.130)

w

The outgoing flux dN, which is the number of outgoing nucleons per unit area and time,

with momenta within a range of dk;dk,dks; is given as

dN = deldedk:;
= (2m) ?0(ky + Koz — kyap)0(E1 + Eos — Ejgy — my)
xI*(p, a)|Us(p, a)|*dk, dkydks, (6.131)

while the incoming flux j is given as

o1 \/(Elabmd — kygp - kg)? — (mmy)?
CTO Brmia

1 /(B2 — m2)m3
(27’(’)3 Elabmd
1 Kiap

- BT E. (6.132)

The target density is jo = (27) 3. Thus, the differential cross section do is obtained as

dN
do = —
JJo
E,
= (27r)4 kll :5(k1 + ko3 — ki) 0 (Eh + Eog — Ejgp — Ma)
xI(p, @)|Uo(p, @) [*dk; dk;dks. (6.133)

For the inclusive Nd break-up process the differential cross section is calculated as a
function of the kinetic energy Ej ; and direction 1A<1 of the detected nucleon. The kinetic
energy Ej  is given as

Ey1 = E; —m, (6.134)

and thus,
dk, = dk,k2dk; = EikydE\dk, = E1kidE}, ,dk,. (6.135)
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We insert Eq. (6.135) into Eq. (6.133), and end up with

do A _ (271')4 ElabElkl
dEkyldkl klab
x [ diadksd (K + Kas — Kian)3(Er + Ezs — Euay, — ma)T*(p, )| Un(p, @)
— (27r)4ElabElk1
klab

X /dk23dPJ(k2, k3)d(ky + ko — kiap)0(EL + Eog — Ejgp — Mmy)
xI*(p, q)|Us(p, q)|?

By Eyk
— (271—)4 labLZ1/v1
klab
A AE,E
x /dpdpsz 222 5(By + Eys — Eiap — ma)T2(p, @)|Us(p, q) |
23 23
EywE kp R
= )2 [apE, By (b, 0)|Un(p, a). (6.136)
ki Mo

In arriving to Eq. (6.136) we have used Eq. (6.117) for J(ks, k3) and

dE23 — d\/ M223 + k%3

= dy/4(m? +p?) + k3,

4p
= —dp. 6.137
Eo3 b ( )
We define a function p(p, q) as
2B 1By E
plrg) = =4 —=T%p.q)
23

2E 10 E1EyEs Mos B EY By B
Mo 4B By B3 Egymyg
E1E53El,abE£l

= ——ZrnarTd 6.138
T (6.138)

allowing the differential cross section to be written in a similar fashion as the nonrela-

tivistic one in Eq. (6.27), that is

do (2ﬂyuﬁpnﬂpk1} 5

B 2k, 6

— = dp |Up(p, ), 6.139
Ed, [ do1th(p.a) (6139)

ms1mgams3m? My

where we have restored the summation over final spins and the averaging over initial spins

3

states. Nonrelativistically the function p(p,q) reduces to m?, and the differential cross

section to the nonrelativistic expression in Eq. (6.27).
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Chapter 7

APPLICATION TO THE
PROTON-NEUTRON CHARGE
EXCHANGE REACTION

In this chapter we apply the 3D formulation derived in the last chapter for the Nd break-
up process to the (p,n) charge exchange reaction and show numerical results together with
comparisons to experiment. We consider the pd break-up process, in which a proton is
directed towards an unpolarized deuteron target. The deuteron is then broken up into
a neutron and a proton, and finally two protons and one neutron scatter in directions,
which are constrained by energy and momentum conservation. In the experiments we
are going to analyze, the neutron is detected, while the two protons are not detected.
Hence, in calculating the observables all possible directions of the two protons are taken
into account. In fact, energy and momentum conservations allow to sum over the relative
directions p between the two protons and not over the exact directions of their motions.
We calculate the spin averaged differential cross section and some spin observables, which
are the neutron polarization Py, the analyzing power A, and the polarization transfer
coefficients D;;. The observables Py, A, and D;; are given in Eqs. (6.28)-(6.34), where the
integration over p is suppressed. The spin averaged differential cross section is given in
Egs. (6.27) and (6.139), where in the latter relativistic kinematics is used. Corresponding

to each observable, we use the following notation

(p,n)pp corresponds to spin averaged differential cross section
(p,@)pp  corresponds to P

d(p,n)pp corresponds to A,
(p,7)pp corresponds to  D;;.
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Here the arrows mean that either the particle is polarized or the polarization of the particle
is measured. The calculations are performed using the NN potentials Bonn-B and AV18.
The numerical realization is described in Appendix G.

We show the results in the following order. Firstly we compare our 3D calculations
with PW calculations of the first order term. Next we compare with the PW calculations,
which take the full break-up amplitude into account. We recall that we use the term ”full
break-up amplitude” for the leading term plus the rescattering terms and the term ”break-
up amplitude” for only the leading term. Thus, here one can see the effects of multiple
scattering in the process. Last we compare between 3D calculations with nonrelativistic
kinematics and the ones, which use relativistic kinematics. This will show the effects of

relativity. Finally we compare with data at various energies.

7.1 Comparison with Partial-Wave Calculations

For a 3N scattering using partial waves one has to check convergence in two different
places. The first is the 2N-subsystem, for which the NN T-matrix is calculated. The
second is the 3N system itself. The NN T-matrix is calculated by including 2N states up
to a NN total angular momentum j. Then using the NN T-matrix as input the Nd break-
up amplitude is calculated by including 3N states up to a 3N total angular momentum
J. In this section we compare our 3D calculations to PW calculations [54, 55]. The
3D calculations can be regarded as the ideal PW calculations, which include an infinite
number of partial waves.

In Figs. 7.1-7.4 we show the 3D calculations and the PW calculations with j = 5
and J = 31/2 for the pd break-up process at Ej, = 16 MeV and neutron labora-
tory scattering angle #,,, = 13°. The calculations are based on the NN potentials
Bonn-B and AV18. Figures 7.1(a) and 7.1(b) show the spin averaged differential cross
section (abbreviated cross section) and the polarization transfer coefficient D,,,, res-
pectively, over the neutron outgoing energies E,. Figures 7.2(a) and 7.2(b) display the
analyzing power A, and the neutron polarization Fy. Figures 7.3(a) and 7.3(b) show
the polarization transfer coefficients D; and Dy, Figures 7.4(a) and 7.4(b) show the
polarization transfer coefficients Dy and Dj,. At Ejy = 16 MeV the 3D and the PW
calculations agree with each other. There is an exception for A, around E, = 3 MeV,
where the curves of the PW calculations oscillate over the smooth curves of the 3D cal-
culations. Now we go to a higher energy. In Figs. 7.5-7.8 the same set of observables is
shown for the same scattering angle 6, = 13° but at a higher energy Ej,, = 197 MeV.
At this energy the 3D calculations disagree with the PW calculations, which again take
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Figure 7.1: The 3D and the PW calculations (j =5, J = 31/2) for (a) the spin averaged

differential cross section and (b) the polarization transfer coefficient D,,, in the pd break-

up process at Ej,, = 16 MeV and neutron laboratory scattering angle #;,, = 13°. The NN
potentials used are Bonn-B and AV18.
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Figure 7.2: Same as in Fig. 7.1, but for (a) the analyzing power A, and (b) the neutron

polarization F,.
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Figure 7.3: Same as in Fig. 7.1, but for the polarization transfer coefficients (a) Dy and
(b) Dss.
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Figure 7.4: Same as in Fig. 7.1, but for the polarization transfer coefficients (a) Dy and
(b) Djs.
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j =5and J =31/2. In Fig. 7.5(a) the height of the cross section peak in the PW calcula-
tion for the Bonn-B is about 14% lower than that in the 3D calculation and about 8% for
the AV18. Figure 7.5(b) shows disagreements between the 3D and the PW calculations
for D,,,, which become more visible as E,, increases (E, > 100 MeV). And this behavior
is also seen for the other polarization transfer coefficients in Figs. 7.7 and 7.8 except for
Dy, in Fig. 7.7(b). For A, and P, in Fig. 7.6 the disagreements occur mostly for E,
between 70 and 130 MeV, that is around the middle of the E,-range for Fj,, = 197 MeV
and 6, = 13°. To give more examples in Figs. 7.9-7.12 we show again the same set of
observables at Ej,, = 197 MeV but for a larger scattering angle 6;,, = 24°. Again we see
disagreements between the 3D and the PW calculations, which take j =5 and J = 31/2.
Here the cross section peak in the PW calculation for the Bonn-B is about 2% higher than
the corresponding peak in the 3D calculation and about 4% for the AV18. Now at this
angle one also sees in Fig. 7.11(b) disagreements between the 3D and the PW calculations
for Dy,. As at 0j, = 13° the disagreements for the polarization transfer coefficients Dj;
occur mostly for the second half of the E,-range, if one goes from lower E,, to higher F,,.
For A, and F; in Fig. 7.10 the disagreements occur near the middle and the maximum of
the E,-range. All these indicate that at Ej,, = 197 MeV the PW calculations with j =5
and J = 31/2 have not converged to the ideal PW calculations, which include all partial
waves, as represented by the 3D calculations.

In order to check the converging process of the PW calculations at Ej,, = 197 MeV
we compare to some PW calculations with increasing j and J, even up to 7 = 7. Figures
7.13 and 7.16 show such comparisons at 6, = 13° for the Bonn-B. Here we show
only for regions of F,, where the converging processes are better seen.  For the FE,-
region shown the PW calculation with j = 7 and J = 31/2 can be considered to have
already converged for Dy, in Fig. 7.15(b). But for the other observables even with j =7
and J = 31/2 the PW calculations do not converge to the 3D calculations. Next we
see that increasing j improves the PW calculations to reach the 3D calculations faster
than increasing J. For A, (Fig. 7.14(a)) and the polarization transfer coefficients D,,,
(Fig. 7.13(b)), Dy (Fig. 7.15(a)), Dy (Fig. 7.16(a)) and Dy (Fig. 7.16(b)) the convergences
of the PW calculations to the 3D calculations at Ej,, = 197 MeV may be achieved with
j =9, but unfortunately this would not be the case for the cross section (Fig. 7.13(a))
and Py, (Fig. 7.14(b)). For P, and moreover the cross section the converging processes are
much slower than those for A,, Dy, Dy, Dy and D;,. Let us take a look at the cross
section in Fig. 7.13(a). With j = 7 and J = 31/2 the cross section peak is raised to be
about 6% higher than the one resulting from the PW calculation with j = 5, J = 31/2,
but still it is about 9% lower than the cross section peak from the 3D calculation. If by
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Figure 7.5: Same as in Fig. 7.1, but at Fj,;, = 197 MeV and 6, = 13°.
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Figure 7.6: Same as in Fig. 7.5, but for (a) the analyzing power A, and (b) the neutron

polarization F,.
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Figure 7.7: Same as in Fig. 7.5, but for the polarization transfer coefficients (a) Dy and
(b) Dss.
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Figure 7.8: Same as in Fig. 7.5, but for the polarization transfer coefficients (a) Dy and
(b) Dys.
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Figure 7.9: Same as in Fig. 7.5, but at 6., = 24°.
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Figure 7.10: Same as in Fig. 7.6, but at 6,,, = 24°.
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Figure 7.11: Same as in Fig. 7.7, but at 6,,, = 24°.
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Figure 7.12: Same as in Fig. 7.8, but at 6,,, = 24°.
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taking j = 9, J = 31/2 one would expect to have the cross section peak further raised
by at most 6%, then it is still about 4% lower than the peak from the 3D calculation.
In fact one should take into account that as one continuously increases the number of
partial waves the improvement is getting less and less, otherwise the calculation will not
converge. Therefore, it is unlikely for the cross section that by always increasing j7 > 7
the PW calculations will soon converge to the 3D calculation. It is worthy to mention
that with j = 5 and J = 31/2 one has actually reached the nowadays limits of the PW
calculations. Therefore, for energies around 200 MeV and higher it is not feasible to
perform a PW calculation, which converges to the corresponding 3D calculation.

Now we go to energies below 200 MeV to see where 3D calculations start to apreciably
disagree with PW calculations. We choose the PW calculations, which take j = 7, J =
31/2 and are based on the NN potential Bonn-B. From the investigation for Ej,, = 197
we know that for the cross section the PW calculation converges slowliest than for other
observables. Therefore, we shall look at the disagreement for the cross section peak.
Nevertheless, we will show all the investigated observables. In Figs. 7.17-7.20 we display
the 3D and the PW calculations for Ej,, = 65 MeV and 6,,, = 13°. At this energy one can
hardly see disagreements between the 3D and the PW calculations. There is an exception
for A, in Fig. 7.18(a) around E,, = 10 MeV, to which a similar disagreement is also seen at
Eigp = 16 MeV around E,, = 3 MeV (see Fig. 7.2(a)). At Ej,, = 65 MeV the height of the
cross section peak in Fig. 7.17(a) from the PW calculation is about 0.5% lower than the
one from the 3D calculation. In Figs. 7.21-7.24 we show the calculations for Ej,, = 100
MeV and 6, = 13°. For the polarization transfer coefficients D;; one can hardly see
disagreements between the 3D and the PW calculations. For A, in Fig. 7.22(a) one sees
around E, = 20 MeV similar disagreements to the ones occuring at Ej,;, = 65 MeV and
E, = 10 MeV (see Fig. 7.18(a)). At Ej,, = 100 MeV the disagreement for the cross
section peak in Fig. 7.21(a) between the two calculations is about 1.7%, thus, it is more
than three times larger than the disagreement at F;,;, = 65 MeV. Now if Ej,, is getting
higher than 100 MeV the disagreement for the cross section peak will quickly increase.
We conclude that for Ej,, = 100 MeV and lower PW calculations with j = 7, J = 31/2
can be used to describe Nd break-up process reasonably well, but for Ej,;, > 100 MeV the
calculations are inadequate. But with j = 7, J = 31/2 this means that one has to pay
much effort to perform the calculations up to the limits. Thus, according to this insight
for Ejp > 100 MeV PW calculations cannot be used to well describe the Nd break-up

process.
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Figure 7.13: Convergence tests of the PW calculations for (a) the spin averaged cross
section and (b) the polarization transfer coefficient D, in the pd break-up process at

E, =197 MeV and 6,,, = 13°. The NN potential used is Bonn-B.
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Figure 7.14: Same as in Fig. 7.13, but for (a) the analyzing power A, and (b) the neutron

polarization F,.
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Figure 7.15: Same as in Fig 7.13, but for the polarization transfer coefficients (a) Dy and
(b) Dss.
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Figure 7.16: Same as in Fig 7.13, but for the polarization transfer coefficients (a) Dy and
(b) Dys.
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Figure 7.17: The 3D and PW calculations for (a) the spin averaged differential cross
section and (b) the polarization transfer coefficient D,,, in the pd break-up process at

Ep = 65 MeV and 6, = 13°. The NN potential used is Bonn-B. The PW calculations
take j =7, J = 31/2.
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Figure 7.18: Same as in Fig. 7.17, but for (a) the analyzing power A, and (b) the neutron

polarization F,.

(b)



7.1 Comparison with Partial-Wave Calculations 153

0.22 |
3D ——
PW: j=7 J=31 B ......
S 0.07F .
-0.08 ]
0 32 64
E, [MeV]
(a)
0.4 |
3D ——
PW: j=7 JzBlB ------
< 02 1
-0.8 ]
0 32 64
E, [MeV]
(b)

Figure 7.19: Same as in Fig. 7.17, but for the polarization transfer coefficients (a) D; and
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Figure 7.21: Same as in Fig. 7.17, but at Ej,, = 100 MeV and 6., = 13°.
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Figure 7.22: Same as in Fig. 7.21, but for (a) the analyzing power A, and (b) the neutron

polarization Fj.
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Figure 7.23: Same as in Fig. 7.21, but for the polarization transfer coefficients (a) D; and
(b) Dss.
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Figure 7.24: Same as in Fig. 7.21, but for the polarization transfer coefficients (a) Dy
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7.2 Contributions from the Rescattering Terms

In the present work we include only the leading term of the full Faddeev Nd break-up
amplitude and leave out the rescattering terms. It can be expected that with increasing
energy the importance of the rescattering terms will have decreased. This can, however,
depend on the kinematical regime. Now unfortunately a 3D full Faddeev calculation does
not yet exist to compare with. Thus, we are forced to compare with existing PW full
Faddeev calculations, which actually can be expected to be reliable only below Ejy, ~ 100
MeV as infered from our comparisons in the last section in first order in the NN T-matrix.
Nevertheless the comparisons with the PW full Faddeev calculations at some higher
energies will provide some hints about the importance of rescattering effects. This insight
will then be some orientation about the usefullness of comparing our 3D calculations in
first order in the NN T-matrix with data. Since now we shall also show experimental
data, it is necessary to discuss the NN potentials Bonn-B and AV18, before we continue
to discuss multiple scattering effects. As already mentioned in Chapter 4 the two NN
potentials are defined below 350 MeV NN laboratory energy. This corresponds to the
NN c.m. energy of 175 MeV. In the Nd break-up process and in our approximations
of keeping the NN T-matrix in first order only the energy for the NN T-matrix is fixed
in terms of the final nucleon’s laboratory momenta and the projectile’s energy. Thus,
we can determine the maximum NN c.m. energy occuring in the 2N subsystem. At
Ejp >~ 200 MeV the maximum NN c.m. energy occuring in the 2N-subsystem is about
133.4 MeV (refer to Section G.4). Therefore, for the Nd break-up process at Ejq, >~ 200
MeV the NN T-matrix elements obtained from the two NN potentials are reasonably
correct. It will be interesting to see the effects from the off-shell part of the NN T-matrices,
which are somewhat different between the two NN potential as shown in Chapter 4. In
a more complete dynamical picture one would have to add also a proper 3N force. Thus,
contributions from the off-shell behavior of the NN T-matrix and the 3N force would
balance each other and the results should be invariant under exchange of the models [56].
Here in our restricted dynamical input we can only get insight, whether the NN potentials
Bonn-B and AV 18 yield essentially the same results or different ones. For Ej,, higher than
263 MeV the maximum NN c.m. energy is higher than 175 MeV, thus, beyond the energy
range, where the NN potentials Bonn-B and AV18 are defined. Therefore, this can be one
source of deficiencies in describing the Nd break-up process at Ej,, > 263 MeV.

In Figs. 7.25-7.40 we show the 3D calculations, the PW full Faddeev calculations [54]
and experimental data [18] at Ej,, = 197 MeV and various scattering angles 6,4, for the

investigated observables in the pd break-up process. The PW full Faddeev calculations
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take j = 5, J = 31/2 for the NN potential AV18 and j = 4, J = 31/2 for the NN potential
Bonn-B. In the last section we have seen that at Ej,, >~ 100 MeV one has already reached
the limits of the PW calculations to get converged results. In that investigation the
case was simpler, since one took only the leading term of the full Faddeev Nd break-up
amplitude. Thus, one could include partial waves up to j = 7, J = 31/2. Now the case
is more complex, since the rescattering terms are also included. Hence, we are provided
with the PW calculations only with a lower number of partial waves. Nevertheless, it is
sufficient to qualitatively see multiple scattering effects. Let us take a look at Figs. 7.25-
7.28, which show the observables at 6;,, = 13°. Figure 7.25(a) displays the cross section.
The sharp peak in the PW calculations close to the highest neutron energy E,, is due to
the final state interaction (FSI) between the two protons, which are not detected. The
F'SI takes place if the two protons are moving together in the same direction. Thus, the
relative momentum between the two protons is zero and this happens if the neutron takes
most of the energy. The FSI is not taken into account in the 3D calculation and the
peak is not detected in the experiment due to the E,-resolution. Therefore, here we can
put the FSI aside. The figure shows that the inclusion of the rescattering terms lowers
the theoretical predictions for the cross section. Now among the spin observables the
analyzing power A, turns out to be suitable to see rescattering effects in the pd break-up
process. The inclusion of the rescattering terms for A, in Fig. 7.26(a) greatly improves
the theoretical predictions to match the experimental data better. The effect is as if it
tilts A, by raising its one end at lower E,. For the other spin observables the inclusion
of the rescattering terms leads to smaller effects than for A,. In some cases like, for
example, for Dy in Fig. 7.27(a) at lower E,, it improves the theoretical predictions. But
in some other cases like for Dy in Fig. 7.27(b) it causes worse agreements with the data.
Next in Figs. 7.29-7.32 we show the same set of observables at a different scattering angle
Oiap = 24°. Again for the cross section in Fig. 7.29(a) we see the rescattering effects
as lowering the theoretical cross section peak. Now the theoretical cross section peaks
overlap with the data. For A, in Fig. 7.30(a) we also see the similar rescattering effects
as at 0, = 13°, which is like a tilt of A, by raising its one end at lower E,. In addition
we also see at F, towards its maximum that the inclusion of the rescattering terms drops
Ay. For other observables we see some various changes caused by the rescattering terms.
At other scattering angles 0., = 37° in Figs. 7.33-7.36 and 0,,, = 48° in Figs. 7.37-7.40 we
see a similar situation for the investigated observables. At this point we have to conclude
that at Ej,, ~ 200 MeV the rescattering terms still give much contributions to the full pd

break-up amplitude and hence cannot be neglected.
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Figure 7.25: The 3D and the PW calculations for (a) the spin averaged differential cross
section and (b) the polarization transfer coefficient D,,, in the pd break-up process at
Ejp =197 MeV and 6,4, = 13°. The NN potentials used are Bonn-B and AV18. The 3D
calculations take the pd break-up amplitude, while the PW calculations take the full pd
break-up amplitude. The experimental data are taken from Ref. [18]. The sharp peak in
the PW calculations for the cross section close to the highest neutron outgoing energy E,,

is due to the final state interaction between the two proton, which are not detected. See

text for more details.
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Figure 7.26: Same as in Fig. 7.25, but for (a) the analyzing power A, and (b) the neutron

polarization F,.
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Figure 7.27: Same as in Fig. 7.25, but for the polarization transfer coefficients (a) D; and

(b) Dss.
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Figure 7.28: Same as in Fig. 7.25, but for the polarization transfer coefficients (a) Dy
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Figure 7.29: Same as in Fig. 7.25, but at 0;,, = 24°.
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Figure 7.30: Same as in Fig. 7.26, but at 0,,, = 24°.
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Figure 7.32: Same as in Fig. 7.28, but at 0;,, = 24°.



7.2 Contributions from the Rescattering Terms

0.22 I
XD, ”
PW full Bonn-B - 4
PW full AV18 -----
= R\ p—
-
@ "
= 010 7 Y
A ' p
o3
EE
-0.02 I
20 90 160
En [MeV]
(a)
0.60 I
XD i
e T PW full Bonn-B -
PW full AV18 -----
. DDA
[ L
g ---------- T, ...-. ~~~~.
Q 0.15 _ I —— |
-0.30 I
| ) 150

Figure 7.33: Same as in Fig. 7.25, but at 0,,, = 37°.

169



170

7 Application to the Proton-Neutron Charge Exchange Reaction

0.16 |
[y e e g
< -0.07 | |
exXp. —+—
PW full Bonn-B -
PW full AVI8 -----
3D Bonn-B ------
3D AV18 —
-0.30 .
70 110 o
(a)
1.2 |
exp. ——
| PW full Bonn-B -
PW full AV18 —----
3D Bonn-B ------
3D AV18 —
S 04 |
{ oz I S
0.4 |
0 110 o
(b)

Figure 7.34: Same as in Fig. 7.26, but at 0;,, = 37°.
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Figure 7.35: Same as in Fig. 7.27, but at 0,,, = 37°.
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Figure 7.36: Same as in Fig. 7.28, but at 0;,, = 37°.
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Figure 7.37: Same as in Fig. 7.25, but at 6,,, = 48°.
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Now we go to higher energies than 200 MeV. There are experimental data at Ej,, = 346
MeV [19]. Unfortunately there exists no full Faddeev calculation for this energy. Hence,
we can compare only with data. In Figs. 7.41-7.44 we show the cross section and the
spin observables in the pd break-up process at Ej,, = 346 MeV and 0,,, = 22°. The
calculations agree only qualitatively with the data. In Fig. 7.41(a) the theoretical peak
of the cross section for the NN potential Bonn-B is higher than the data, but on the
contrary for the NN potential AV18 it is lower than the data. We recall the discussion for
Ejq = 197 MeV that the multiple scattering lowers the cross section. If this process is not
neglibgible at Ej,, = 346 MeV that means that by including the rescattering terms the
theoretical prediction based on the NN potential Bonn-B may be improved but the one
based on the NN potential AV18 is getting worse. Now regardless the height of the peak,
the position of the theoretical peak is shifted to a higher neutron energy E,, compared
to the data. This is actually already seen at Ej,;, = 197 MeV and it cannot be fixed
by including the rescattering terms. Therefore, other processes are responsible to shift
back the cross section peak along FE, to the right position. These dynamical ingredients
together with the multiple scattering may also determine the height of the peak or the
whole parts of the cross section. For A, in Fig. 7.42(a) the rescattering terms seem to be
required to tilt the theoretical prediction to be closer to the data, if we recall the similar
improvement of the theoretical prediction at Ej,, = 197 MeV by including the rescattering
terms. Thus, at this energy Ej,;, = 346 MeV one can argue that the rescattering terms
are still important to be included.

Lastly we go on to Ej,, >~ 500 MeV. We compare with experimental data at Ej,, = 495
MeV [57]. Again at this energy there is no full Faddeev calculation. In Figs. 7.45-7.48
we show the observables at Ej,;, = 495 MeV and 6, = 18°. We see in Fig. 7.45(a)
that the calculations overestimate the cross section at the peak and that the theoretical
peak is shifted to a higher neutron energy FE,,, compared to the data. In Fig. 7.46(a) the
theoretical predictions for the analyzing power A, are somewhat below the experimental
data but not at E,, close to its maximum. Similar as in the case at Ej,, = 346 MeV one
can conjecture that at Ej,, = 495 MeV the rescattering terms are necessary to be taken

into account.

7.3 Effects of Relativity

We saw in the last section that compared to data the theoretical peaks of the cross sections
are shifted to higher neutron energies in comparisons with the data. The shifts are getting

larger as the energy Ejq, increases and cannot be fixed by including the rescattering terms
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Figure 7.41: Same as in Fig. 7.25, but with no PW full Faddeev calculation, at E;,, = 346
MeV, 0,4, = 22°. The experimental data are taken from Ref. [19].



7.3 FEffects of Relativity 179

0.20 T

< 011 { {

exp. ——

3D Bonn-B ------
3D AV18§ ——
T
0.02 .
220 270 320
E, [MeV]
(a)
0.30
Q7 0.17 F e
0.04 — '
220 270 320

E, [MeV]
(b)
Figure 7.42: Same as in Fig. 7.41, but for (a) the analyzing power A, and (b) the neutron

polarization F,.



180 7 Application to the Proton-Neutron Charge Exzchange Reaction

0.0 T

exp. p——
3D Bonn-B ------
3D AV18 —

-0.8 '

220 270 320
E, [MeV]
(a)
0.20 .
T exXp. ——
3D Bonn-B ------
3D AV18 —
F o T { { -
-0.70 .
220 270 320
E,, [MeV]
(b)

Figure 7.43: Same as in Fig. 7.41, but for the polarization transfer coefficients (a) D; and
(b) Dss.
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Figure 7.45: Same as in Fig. 7.41, but at Ej,, = 495 MeV and 6;,, = 18°. The experimental
data are taken from Ref. [57].
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Figure 7.46: Same as in Fig. 7.45, but for (a) the analyzing power A, and (b) the poal-
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Figure 7.47: Same as in Fig. 7.45, but for the polarization transfer coefficients (a) D; and
(b) Dss.
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of the full Faddeev Nd break-up amplitude. Therefore, another process (or processes) must
also be taken into account to bring the theoretical peak to the right position. The process
should become more important as the energy Ej,, increases. Since we are observing the pd
break-up process at higher energies, we consider to include relativity in our calculations.
The formulation derived in Chapter 6 for the cross section is fully relativistic, but in
practise there we were still forced to approximate the relativistic S-matrix. We restricted
ourselves just to relativistic kinematics. This includes, however, not only the changes of
the phase-space factor but also the S-matrix elements. The latter is due to the relativistic
momenta, which enter as arguments of the NN T-matrix and the deuteron wave function
components. We have to leave further steps for future investigations. These further steps
are boosting the NN T-matrix [58] and Wigner’s rotation [59], which are still under debate
in the literature.

Let us more closely look at the position of the cross section peak. In the inclusive
Nd break-up process without consideration of the FSI the cross section peak occurs at a
point along the energy FE; of the detected nucleon, where after the break-up one of the two
undetected nucleons is at rest. Thus, in the investigated pd break-up process the cross
section peak occurs at a point along FE,,, where one of the two protons is at rest after the
break-up. Then in the final state two nucleons carry most of the energy of the process.
The process then happens as if one of the three nucleons acts just as a spectator, while
the other two collide upon each other. The process is called the quasi-free scattering
(QFS) and the cross secton peak under discussion the QFS-peak. The position of the
QFS-peak can be determined by means of the energy and the momentum conservations,
while setting the final momentum of one of the two undetected nucleons to be zero. Using

nonrelativistic kinematics we obtain the QFS-peak position ElQFS as

1 1 1

ElQFS = iElab cos” Orap + §Ed + 5\/Elab 052 O1qp (Eap €082 O10p + 2E4), (7.5)

and using relativistic kinematics we obtain the QFS-peak position ElQFS’Tel as

—B+ VB2 —-4AC
ElQFS,rel — 7 (76)
2A
with

A = 4((2m + Elab)Elab COS2 HW, — (2m + Elab + Ed)Q) (77)
B = 4(2(2m + Elab)mElab COS2 GZab —+ Ed(2m + Elab + Ed)(2m —+ 2Elab + Ed)) (78)
C = —Eﬁ (2m + 2Elab + Ed)2. (79)

Note that in Eqgs. (7.5), (7.7)-(7.9) Ej4 is the kinetic energy of the projectile and not its
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total energy.! In Table 7.1 we show EIQFS and ElQFS’rel at some energies and scattering
angles, at which data for the pd break-up process exist and have been shown in the
previous section. We see in the table that EIQFS’TBI is less than EIQFS. Thus, relativity
brings the QFS-peak position to a lower energy of the detected nucleon, compared to the
one obtained from a nonrelativistic calculation. Later we shall compare the QFS-peak
positions shown in Table 7.1 with data as we also check other relativistic effects in the pd
break-up process. In the table we see at Ej,, = 197 MeV that the difference between ElQFS
and ElQFS’Tel is getting larger as the scattering angle 6,,, increases. It is also indicated in
the table that the difference between EIQFS and ElQFS’rel is getting larger as the projectile

energy Fj,;, increases, which is something that one would expect from a relativistic effect.

Table 7.1: The QFS-peak positions EIQFS and ElQFS’rel for the pd break-up process at

some energies and scattering angles.

By [MeV] | 00 || ESTS [MeV] | EQT57 [MeV]
197 | 13° 184.8 183.8
197 | 24° 162.2 159.3
197 | 37° 123.4 118.7
197 | 48° 86.0 81.0
346 | 22° 295.2 287.6
495 | 18° 445.5 434.4

Here we sketch out how to arrive at Egs. (7.5) and (7.6). To obtain ElQFS in Eq. (7.5) we begin with

the energy and the momentum conservations for the Nd break-up process, which are given as:

Eip + B4 = E1+E>;+ Es (7.10)
kiww = ki +ko+ks. (711)

Next we choose in the final state that nucleon 3 is at rest, thus, k3 is equal to zero. Under this condition
Egs. (7.10) and (7.11) lead to a quadratic equation in y/E; given as

2E1 + Ejqp — 2v/ E1Ejqp 08010 — Ejgp — Eq = 0. (7.12)

The solution of Eq. (7.12) leads to ElQFS as given in Eq. (7.5). Now to obtain ElQFS’TEl in Eq. (7.6) we
start with the same momentum conservation given in Eq. (7.11) and the relativistic energy conservation

for the Nd break-up process, which is given as
Epgp + mg —2m = E, + By + E5. (713)

Next we set ks to be zero, and then Egs. (7.11) and (7.13) lead to a quadratic equation, of which one of

QFS,rel
El

the solutions is as given in Eq. (7.6).
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Now we continue to compare between the calculations with and without the relativistic
correction as well as experimental data for the pd break-up process at various energies
and scattering angles. In Figs. 7.49-7.64 we show the comparisons at Ej,;, = 197 MeV.
The nonrelativistic and the relativistic QFS-peaks in Figs. 7.49(a), 7.53(a), 7.57(a) and
7.61(a) occur at EP" and ERTS respectively, as given in Table 7.1. Encouragingly
the relativistic correction brings the QFS-peaks at 6., = 24° in Fig. 7.53(a), at 0;,, = 37°
in Fig. 7.57(a) and at 6,,, = 48° in Fig. 7.61(a) to the correct positions along the neutron
energy E,, where also the data occur. But it also raises the heights of the peaks to be
higher than the data. At 6, = 13° in Fig. 7.49(a) the relativistic correction shifts the
QFS-peaks in the same direction as at other #,,,’s. The result is that now the peaks occur
at lower F,, compared to the data. To understand this let us return to Fig. 7.25(a),
which shows the PW full Faddeev calculations for the cross section at Ej,, = 197 MeV
and 6, = 13°. In Fig. 7.25(a) we see that the FSI is very important at this energy and
scattering angle as indicated by the very high peaks in the PW full Faddeev calculations at
the maximum of F,,. In addition the FSI-peak occurs very close to the QFS-peak. Thus,
at B, = 197 MeV, 0., = 13° the height and the position of the cross section peak is also
determined strongly by the F'SI. Since we do not include the FSI, we obtain the results
as shown in Fig. 7.49(a) that the calculations predict the cross section peaks occuring
at a shifted position to lower E,. For the spin observables the relativistic correction
leads to various effects. In some cases the effects are getting larger as F, increases
towards its maximum. This is seen, for example, for A, in Figs. 7.54(a) (6, = 24°),
7.58(a) (O1ap = 37°), 7.62(a) (00 = 48°) and for Dy, in Figs. 7.55(b) (00 = 24°), 7.59(b)
01y = 37°), 7.63(b) (01ap = 48°). There at FE,, towards its maximum the relativistic
correction lowers the theoretical predictions for A, and increases the ones for Dys. In any
case we can state that at Ej,, = 197 MeV the relativistic correction is clearly required to
correctly place the cross section peak along the neutron energy.

Similar comparisons are shown in Figs. 7.65-7.68 for Ej,;, = 346 MeV, 0,, = 22°
and in Figs. 7.69-7.72 for Ej,, = 495 MeV, 6,,, = 18°. The nonrelativistic and the rel-
ativistic QFS-peaks in Figs. 7.65(a) and 7.69(a) occur at EX"® and E®"5™ as given
in Table 7.1. As at Ej,, = 197 MeV the relativistic correction brings the QFS-peaks
in Figs. 7.65(a) and 7.69(a) to where the data occur along FE,. It also increases the
heights of the peaks. We would like to point out that at Fj,, = 346 MeV the relativistic
QFS-peak in Fig. 7.65(a) is surprisingly shifted to the left, compared to the data.
The origin of this little discrepancy between the calculations and the data can be traced
back to the experiment. In the experiment there is an uncertainty of the energy, at which

the pd break-up process exactly occurs. For example, due to the thickness of the target
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Figure 7.49: The 3D calculations for (a) the spin averaged differential cross section and
(b) the polarization transfer coefficient D,,, in the pd break-up process at Ejq, = 197 MeV
and 0,,, = 13°. The NN potentials used are Bonn-B and AV18. The word “rel” in the

curves’ labels means that the corresponding calculations include relativistic kinematic.

The experimental data are taken from Ref. [18].



190 7 Application to the Proton-Neutron Charge Exzchange Reaction

0.26 |
{ I ' I . o«
< 0.03 F { ‘ 1
exp. ——
3D rel Bonn-B -
3D rel AV18 -----
3D Bonn-B ------
3D AV18 —
20,20 b———— .
E, [MeV]
(a)
0.4 |
| T exp. —+—
3D rel Bonn-B
3D rel AV18 -----
3D Bonn-B ------
T ] 3D AV18 ——
£ 01F 7 1
-0.2 L
100 145 o0
E, [MeV]
(b)
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Figure 7.61: Same as in Fig. 7.49, but at 6,,, = 48°.
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Figure 7.62: Same as in Fig. 7.50, but at 6;,, = 48°.
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7.3 FEffects of Relativity 205

the proton may have lost some of its energy before it hits and breaks the deuteron apart
[54]. In this case the process occurs at some energy, which deviates from the considered
one. At Ej,;, = 346 and 495 MeV one sees more clearly than at Fy,;, = 197 MeV that
for the spin observables the relativistic effetcs become larger as E,, increases and mostly
at F, towards its maximum. For A, at Ej, = 346 MeV in Fig. 7.66(a) we see a similar
tilting effect as the one seen in the last section, when we investigated the rescattering
process. Clearly at higher energies relativity is getting more important. Therefore, the
relativistic correction leads to more changes as the energy increases.

Now we tentatively discuss the relativistic correction in connection with the
inclusion of the rescattering terms of the full Faddeev Nd break-up amplitude. In the last
section it was shown that the multiple scattering decreases the pd break-up cross section,
which is especially visible around the peak. Compared to the data the theoretical peak
is, however, shifted to a higher neutron energy E,. Here in this section we see that the
relativistic correction shifts the theoretical peak back to the correct position along FE,,
but increases its height.  Therefore, one could conjecture that including both,
the rescattering terms and the relativistic correction, will move the theoretical
prediction for the cross section peak towards the data. For the analyzing power A, the
multiple scattering improves the theoretical prediction by the effect like tilting A,. Thus,
it lifts A, at lower E,, and drops A, at F), close to its maximum. An almost similar effect
is again caused by the relativistic correction, which can best be observed in Fig. 7.66(a).
Therefore, including the rescattering terms and the relativistic correction will very likely
improve the theoretical prediction. Thus, for the higher energies we considered, say from
=~ 200 MeV to 500 MeV, we conjecture that both multiple scattering and relativity must
be taken into account.

After the observations at higher energies we go to energies lower than Ej,; ~ 200
MeV and seek for relativistic effects. In Figs. 7.73-7.76 we show the cross section and
the spin observables at Fj,, = 16 MeV, 60,,, = 13° and in Figs. 7.77-7.80 at Ey,;, = 65
MeV, i = 13°. At Ejy, = 16 MeV we see for the cross section in Fig. 7.73(a) only small
relativistic effects. The cross sections obtained from the relativistic calculations are larger
than the ones from the nonrelativistic calculations, that is about 1.4% at the peak around
E, = 6 MeV. For the spin observables relativistic effects are hardly seen at Ej,;, = 16
MeV. At Ej,, = 65 MeV in Fig. 7.77(a) the cross section peaks around F,, = 58 MeV
arising from the relativistic calculations are already clearly seen to be shifted to lower
E,,, compared to the ones from the nonrelativistic calculations. The heights of the cross
section peaks from the relativistic calculations are about 6% higher than those from the

nonrelativistic calculations. At Ej,, = 65 MeV relativistic effects for the spin observables
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Figure 7.65: Same as in Fig. 7.49, but at Ej,, = 346 MeV and 60;,, = 22°. The experimental
data are taken from Ref. [19].
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Figure 7.69: Same as in Fig. 7.65, but at Ej,, = 495 MeV and 6;,, = 18°. The experimental

data are taken from Ref. [57].



7.8 Effects of Relativity 211

0.16 — |
=000k 0TI s
) exp. ——
3D rel Bonn-B -
3D rel AV18 -----
3D Bonn-B ------
3D AVI8 —— {
0.02 I
390 425 460
E, [MeV]
(a)
0.4 |
exp. —+—
3D rel Bonn-B
3D rel AV18 -----
3D Bonn-B ------
3D AV18 —
S 0.2 |
0.0 — |
390 195 0
E, [MeV]
(b)

Figure 7.70: Same as in Fig. 7.69, but for (a) the analyzing power A, and (b) the neutron

polarization F,.
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Figure 7.71: Same as in Fig. 7.69, but for the polarization transfer coefficients (a) D; and
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Figure 7.72: Same as in Fig. 7.69, but for the polarization transfer coefficients (a) Dy
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can be seen, for example, in Fig. 7.78(a) for A,. The effects are about 4% around E,, = 42
MeV. Therefore, at Ej,, = 65 MeV the relativity has already begun to be important.
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Figure 7.78: Same as in Fig. 7.74, but at Ej,, = 65 MeV and 6,,, = 13°.
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Figure 7.79: Same as in Fig. 7.75, but at Ej,, = 65 MeV and 6,,, = 13°.
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Figure 7.80: Same as in Fig. 7.77, but at Ej,, = 65 MeV and 6,,, = 13°.



Chapter 8

SUMMARY AND OUTLOOK

We have developed a technique to perform few-nucleon calculations in momentum space
without employing partial wave decompositions. We call this the 3D technique. We
began with the NN system and continued to 3N scattering, which was the Nd break-up
process in first order. The 3D technique has been intended to be a viable alternative to
the succesful PW technique. At higher energies the 3D technique should be better suited
than a PW based one. Here we summarize how we developed our 3D technique for the
NN system and the Nd break-up process. The calculations in this work were carried out
based on the NN potentials AV18 [20] and Bonn-B [21]. Finally we give an outlook for

further investigations as well as developments of the 3D technique.

NN Scattering

To develop the 3D technique it was necessary to start with NN scattering, since the NN
T-matrix is input to calculations of more complex few-nucleon systems. The first step
was to define basis states for the NN system. We defined momentum-helicity basis states
being antisymmetric under exchange of the two nucleons in momentum, spin and isospin
space. As reflected by the name the momentum-helicity basis states were constructed
using momentum vectors states and helicity states of NN total spin. The NN total spin
was chosen instead of individual spins of the two nucleons to allow obtaining a smaller
number of LSE’s to be solved. The symmetry properties of the T-matrix and the NN
potential matrix elements in the momentum-helicity basis states allow the reduction of
the number of the LSE’s for the NN T-matrix from 10 to 5 for each NN total isospin state.
All LSE’s in the 3D technique are integral equations in two variables, the magnitude of
the relative momentum between the two nucleons and the scattering angle.

The NN potential is expressed in a set of six independent operators, {2. We defined the
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() operators to be suitable for the momentum-helicity basis states and thus, allow for very
simple evaluations of the NN potential matrix elements. We derived a relation between
the set of the 2 operators and the set of six operators known as the Wolfenstein operators
[26]. This is possible due to the invariances, symmetry conditions and the hermiticity of
the NN potential [41]. We want to point out that any NN potential given in operator form
can be used in the 3D technique. Representative potentials are the AV18 and Bonn-B
potentials, which were used in this work.

In order to calculate observables and compare them with NN data we connected the
T-matrix elements in the momentum-helicity basis states to the ones in a physical repre-
sentation. The physical representation uses spins and isospins of the individual nucleons,
where the spins are quantized along an arbitrary but fixed z axis. Hence, the physical
representation is closely connected to the experimental set up of NN scattering. We also
expanded the T-matrix elements in the momentum-helicity basis states into partial waves
and compared the resulting NN phase shifts to the ones from standard PW calculations.
The agreement with the PW calculations for the NN phase shifts as well as for the NN
observables is perfect. The comparisons for NN observables showed that especially for
higher energies many partial waves are needed in the PW calculations to converge to
the 3D calculations. For example, at Ej,;, = 300 MeV the PW calculation for the np
differential cross section must take at least j,,.. = 16 corresponding to 98 LSE’s. We also
compared our 3D calculations to observables based on the phase shifts determined in a
partial wave analysis (PWA) as well as directly to NN data for laboratory energies higher
than 300 MeV. Later, when we calculated the Nd break-up process at various energies,
we needed the NN T-matrix for those energies. Since the 3D technique is applicable with
equal performance for any energy, the comparisons were intended to check the imple-
mentations of the two NN potentials AV18 and Bonn-B in the 3D technique at higher
energies. Though these two parameterized NN potentials have been fitted to NN data
only for energies below 350 MeV, the comparisons with the PWA results and NN data

showed nevertheless rather good agreements.

The Deuteron

Conventionally the deuteron has always been calculated as a set of coupled equations for
orbital angular momenta [ = 0 and | = 2. It was interesting to investigate, if we can
use the momentum-helicity basis states for a solution of the NN bound state. To achieve
this we projected the deuteron state and the eigenvalue equation onto this basis. Thus,

we defined the deuteron wave function components, which are three-dimensional, in the
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momentum-helicity basis states. We also defined deuteron probability densities in the
momentum-helicity basis states. We derived the deuteron equations in the momentum-
helicity basis states as two coupled integral equations in two variables, the magnitude of
the relative momenta between the two nucleons and an angle referring to an arbitrary z
direction. We related the deuteron wave function components in the momentum-helicity
basis states to the ones in the PW basis states. This connection allows to calculate the
PW projected deuteron wave function components in s and d waves from the deuteron
wave function components in the momentum-helicity basis states. Comparisons with the
PW calculations for the deuteron s and d waves showed good agreements.

Next, using the momentum-helicity basis states, again we formulated the deuteron
equation and the deuteron wave function components in a different way. At first we
kept the deuteron state being expanded in partial waves, and then derived an operator
form for the deuteron wave function in momentum space. By means of the momentum-
helicity basis states the deuteron wave function in operator form led to the deuteron
wave function components in the momentum-helicity basis states, but now with analytic
angular behavior. This analytic angular behavior confirmed the numerical one obtained in
the first formulation. This allowed us to derive the deuteron equation in one variable only,
namely the magnitude of the relative momentum between the two nucleons. We solved
this equation and obtained the same results as those in the first formulation. Again we
connected to the standard PW decomposition and obtained good agreements for the PW
projected deuteron wave function components in s and d waves. Finally by means of the
deuteron wave function in operator form we investigated in a 3D fashion the probability
densities for some spin configurations of the two nucleons inside the deuteron for an overall

polarized deuteron.

The Nd Break-Up Process

Finally we stepped to a 3N system and extended the 3D technique for the Nd break-up
process. We are interested in higher energies and decided to consider only the leading order
term of the full Nd break-up amplitude. Thus, we wanted to see if the leading term alone
could describe the Nd break-up process for the higher energies being considered, which
were beyond ~ 200 MeV nucleon laboratory energy. We used the Faddeev’s scheme to
treat the Nd break-up process. For simplicity we kept the deuteron state being expanded
in partial waves. This was a natural step, since the deuteron wave function has only two
partial wave components, s and d waves. We started with deriving the leading term of the

full Nd break-up amplitude in the 3N basis states, which were in a physical representation.
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As in the NN scattering case the physical representation uses spins and isospins of the
individual nucleons, where the spins are quantized along an arbitrary but fixed z axis. The
kinematics of the three nucleons were described by two Jacobi momenta such, that the
3N system was considered as consisting of one nucleon and a 2N subsystem. Symmetry
properties under exchange of the three nucleons were introduced to the leading term
of the full Nd break-up amplitude by means of permutation operators. As a result we
obtained an expression for the leading term in terms of the NN T-matrix elements in
the physical representation. Using the previously derived physical representation of the
NN T-matrix elements it was straightforward to obtain the leading term of the full Nd
break-up amplitude in terms of the NN T-matrix elements in the momentum-helicity basis
states. In the resulting expression the initial 2N relative momenta as arguments of the
NN T-matrix elements in the momentum-helicity basis states were pointing in arbitrary
directions. To solve the NN LSE’s for the NN T-matrix we choose a fixed, say z, direction
as the directions of the initial NN relative momenta. Therefore, as a final step we rotated
the NN T-matrix elements in the momentum-helicity basis states such, that the initial
2N relative momenta were pointing into a fixed z direction. The rotation then led to an

intricate additional phase factor.

With this leading term of the full Nd break-up amplitude in the momentum-helicity
basis states we calculated observables. Since for higher energies one also has to expect
relativistic effects to be important, we took a further step, namely included relativistic
kinematics. Here we restricted ourselves to a very first and necessary step, namely to
replace the nonrelativistic Jacobi momenta and energy arguments of the nonrelativistic
leading term with the relativistic expressions. Finally we derived the cross section using
the standard relativistic scattering theory. Thus, the leading term and the phase space
factor of the cross section changed compared to the one obtained using nonrelativistic

scattering theory.

We applied the formulation for the Nd break-up process in a 3D approach to the (p,n)
charge exchange reaction in the inclusive pd break-up process. In this process a proton is
directed towards a deuteron, which then breaks up, and finally the neutron is detected,
while the two protons are not detected. We calculated the spin averaged differential cross
section (shortly called cross section) and some spin observables, which were the neutron
polarization, the proton analyzing power and the polarization transfer coefficients. We
discussed three different aspects of our calculations. First, we compared our calculations
to the PW calculations for proton laboratory energies Ej,, up to 197 MeV. It turned
out that up to Ej,, = 100 MeV our calculations still agreed with the PW calculations.

There was, however, already a discrepancy of about 1.7% for the cross section peak at
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100 MeV, where the PW calculations took 2N states of 2N total angular momenta j <7
and 3N states of 3N total angular momenta J < 31/2. In fact, by taking so many
angular momentum states one has already reached the present limits of PW calculations.
At Ej = 197 MeV our calculations disagreed with the PW calculations with 7 < 7 and
J < 31/2, since the PW calculations did not sufficiently converge. A convergence test also
showed that the 2N total angular momentum states are more important than those of the
3N total angular momentum for the PW calculations to achieve convergence. For the same
number of total angular momentum states taken into account disagreement between our
calculations and the PW calculations grows rapidly as the energy increases. We concluded
that for E,, > 100 MeV PW calculations cannot be used safely to accurately describe
the Nd break-up process.

Secondly, we wanted to show the importance of rescattering effects. Thus, we com-
pared our calculations at E,;, = 197 MeV to the PW full Faddeev calculations, which
included not only the leading term but also the rescattering terms of the full pd break-up
amplitude. The comparisons showed that at this energy rescattering effect do occur and
mostly show up in the cross section and the analyzing power. For these two observables
inclusions of rescattering terms led to results closer to the data. We concluded that at
E.p = 197 MeV rescattering terms of the full Nd break-up amplitude still have to be

considered.

For energies higher than 197 MeV we had no PW full Faddeev calculations to compare
with. Therefore, we compared directly to the data at Ej,;, = 346 and 495 MeV. For
these energies we could only conjecture that rescattering terms may be necessary, since

discrepancies to the data were visible.

At last, we studied the effect of relativistic kinematics in our calculations. For this
purpose we compared our 3D calculations with and without relativistic kinematics to
each other for energies of 197, 346 and 495 MeV, at which we also had the experimental
data. At these energies we observed relativistic effects mostly in the cross sections and the
analyzing powers. For these two observables relativistic kinematics led to better results in
relation to the data. The effects grew larger with increasing energy, as one might expect.
In comparisons to the data the observed relativistic effects together with the previously
seen rescattering effects led to a conjecture that to better describe the pd break-up process
at higher energies, say ~ 200 MeV to 500 MeV, one needs to include both, the rescattering
terms and the relativistic corrections. In order to find out at which energy relativistic
effects appear already to be important we compared our calculations with and without
relativistic ingredients to each other at 16 and 65 MeV. We found that at Ej,, = 65 MeV

relativistic effects started to be visible.
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Finally we would like to summarize our work within one paragraph. We have developed
a 3D technique for NN scattering, the deuteron and the Nd break-up process. The 3D
technique has proven to be a good alternative to the PW decomposition and appears to
be necessary at higher energies. In contrast to the PW decomposition the 3D technique
requires much less algebraic work. For lower energies, where the PW calculations are still

reliable, the 3D calculations show perfect agreements with the PW calculations.

Outlook

It is clear that after finishing this work, there are still many investigations left on few-
nucleon systems to pursue using the 3D technique. For the NN system it is interesting
to implement in the 3D technique new NN potentials such as the ones [60] based on the
chiral perturbation theory. For few-nucleon bound systems with nucleon numbers greater
than 2 the 3D technique should necessarily be employed, since unlike for the deuteron
the triton [61, 62, 63], the a-particle [64, 65] and other more complex few-nucleon bound
systems involve very many angular momentum states. For 3N scattering we have not yet
solved the full Faddeev equation, which has been shown to be important. We also have
not yet included three nucleon forces (3NF’s), which may play a more predominant role
at higher energies. In appreciating relativity we only considered relativistic kinematics.
We have not taken into account the boost of the NN T-matrix [58] and the Wigner
rotations [59]. These will be interesting and challenging investigations to carry out in the
future. Especially in incorporating dynamical features of relativity a 3D formulation will
be rewarding. From our point of view the next step will be to include the rescattering
terms of the full Nd break-up amplitude and 3NF’s. This will enter a domain at higher

energies, which up to know has not yet been investigated thoroughly.
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Appendix A

THE ROTATION MATRIX

In this appendix we give derivations of the two relations for d’ ,

main text. See Ref. [31, 32] for a more detailed description of d’, .

which we used in the

Wigner’s definition for df;l,m is

N

dm(8) =[G+ m)(G —m)!(G +m)(G —m')]
y (=)"
Zn: (j—m'—n)l(j+m—n)l(n+m"—m)n!

2j+m—m'—2n m' —m+2n
X cosé —siné . (A.1)
2 2

It is obvious from this definition that d, = is real.

The first relation is
& (= B) = (=) d, _(B). (A.2)

Using the definition given in Eq. (A.1) this relation can be derived as

N

B (m = B) = |G +m)!(j = m)!(G +m)!(G —m')!]

XXn:( (_)n

j—m' —n)l(j+m—n)l(n+m —m)n!

( _— /B> 2].+T7’L*m,*2n ( T — /B> m' —m-+2n
X | cos — Sin
2 2

1
2

= ([ +mG = m)lG + (= m)]

) ()
27

jg—m' —n)l(j+m—n)l(n+m' —m)n!

m' —m-+2n 2j+m—m'—2n
X | cos é — sin é
2 2
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1
2

= (29[ +m)G —m)'G +m)G —m)]

XZ; -y

Hu+m'+m)!l(j —m —u)l(j —m' — u)!

2j—m—m'—2u 6 m/+m-+2u
cos = —sin —
2

() (=Y " d—(B)
= ( O (=, (B)
= () (B): (A.3)

Similarly we can also have the following relation

&y (= B) = (=) (B), (A.4)

which is obtained if we insert u = j+m —n instead of u = j —m' —n in the third equality
of Eq. (A.3):

M

By (= B) = (=) +m)(G = m)!(G +m)(G — m)]
3 (=) Hm

(w—m' —m)lul(j +m' —u)!(j +m —u)!

( 6>2j+m+m —2u ( . B) —m/ —m+2u
COS — — Sin 5

= () (=Y (B)
= ( I (=) (B)
= (=) 0 (B).
The second relation is
d‘;%,m(ﬁ):( )m md{m o (0). (A.5)

This can be derived using Eqs. (A.2) and (A.4) as

dfﬂ’m(e) = j+m,d¥n’,fm(7r - 0)

Jj+m ( )H—mdj (9)

—m/,—m

2(]+m)( )m md]—m’ m(e)



Appendix B

THE () OPERATORS

The general structure of a NN potential has the following form

6

V(qla q) = Z Ui(qla q, ’}/)A’L]QJJ (B]')
i,7=1
where the €0; operators are defined as
91:1 QQZS2 Q3:S
Q2,=S-4dS-q Qs =(S-4)*(S-q)* Q=S

ol

/S_q/
. B.2
S, (B.2)

o}
o}

Note that the €2; operators are composed of helicity operators in the directions of q and

q'. These operators are related to the Wolfenstein W; operators given in Eq. (3.29) as

Wi=3_ A%, (B.3)
J

where the transformation matrix A = {4;;} is given as

1 0 0 0 0 0
0 ia =2 2t 2t =2
Yy Yya a Yya Yya
_ 2y =2
A= ! Lo @ @ v : (B.4)
-1 =q¢'qa*  2¢'(dv+9) 2¢'q¢ =2¢'q 2q(gy+q)
ye ye c ye ye
1 q'qa®  2¢'(¢v—9) —2¢q 2¢q 29(¢7—q")
vb vb b b ~vb
_2(ql2_q2) 4q12 _4q2
e 0 e 0 0 e

with

a=y1-19" b=q"”+q¢*—2q¢qy c=q"+¢ +2qqy
11 '

e =/(q% + )2 — 42¢*7 f=p+g 9= —p

)

This was derived by means of Mathematica. Obviously the matrix elements A;; are scalar

functions and depend only on ¢, ¢’ and -, which is the angle between ' and q. We
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calculate the determinant of the matrix A and get

det A =

qq'

and find the inverse matrix A~! to be

—i99
V1 =72 <|Q'+CI||CI'—CI|

B The 2 Operators

>3, (B.5)

1 0 0 0 0 0
3 0 1 e? e? —(¢”—¢%)e
2 2 8a2q’2q2 8a2q’2q2 8a2q’2q2
1 0 0 _c_ _b_ _e_
-1 2 8q/2 8q/2 8q/2
e R A ’ . (B.6)
2 4 84¢'q 84'q
1+9® ey —a? fe It ge
4 4 4 16 16 16
1 c b —e
2 0 0 8q2 8q2 8q2

In the transformation matrix A given in Eq. (B.4) there are terms of v, (1

1
—7?) 3

and (1 — 7?)~! which seem to cause singularities for v = 0,1. If we insert this matrix A

into Eq. (B.3) we find those terms appear as

1
—(QQ — 293 + 295 - 296) in W 2 V"4, W 5 (B?)
7y

1

1
T {294 — ’)’QQ + —(QQ - 2Q3 — 296 + 295)} in W2
Y

— (B.8)

1

L=y
We show in the following that these terms do not cause singularities.

Multiplied with a factor 2 (just for convenience), the numerator in Eq. (B.7) gives
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where we have used the identity relation
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For v =0
4 xq =1
4 +al = ld—al=v2

therefore the numerator in Eq. (B.7) vanishes.

For v =1

Q= =0 = (s.q)2:

>~ =] =

Qs = (5-9)'=

Therefore, the numerators in Eqs. (B.8) and (B.9) vanish.
In the inverse A™! of the transformation matrix given in Eq. (B.6) there occur the

(1 —~?)~! terms. Inverting the relation given in Eq. (B.3) this term appears only in

as

{(q'2 + q2)2 . 4(]'2(]272} (Wi + W) — (q/2 - q2)\/(q’2 + )2 — 4¢2¢2?* W
1—12 '

(B.11)

For v = 1 the numerator of this term vanishes as can be shown here
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Appendix C

THE BONN
ONE-BOSON-EXCHANGE
POTENTIAL

The pseudoscalar, scalar and vector part of the Bonn one-boson-exchange potential (OBEP)

takes the following form:

Do O / / q—q Ops
Vsd @) = (27)34m? q —q)? m2 W'W (C.1)

~

' _ [T Os
Vilda) = (2m) 34m2 \/7 (d' —q) —i—m2 W'W (C.2)

v(, ) . \/7 2 (guovv+2gvaévt+f30tt) (03)
-4 = 27r34m2\/ (d' — q) +m2 W'W ’ '

where m denotes the nucleon mass, m, (o = ps, s, v) the meson’s mass, £ = Vm? + g2
and W = m + E. The form factor F2[(q' — q)?] is given as

A2 B m2 2n
FZ I 2 — o o , C4
- 0= (5 ) (©4)
with A, being the cutoff. In the propagator one has

(d-a)® = ¢"+¢—2¢qy (C.5)

v = qq=cost cosf +sinf sinf’ cos(¢’ — ¢). (C.6)

The 05 operators (3 = ps, s, v, vt, tt) take a form of a combination of o - q, o2 - q,
o1-q and o5 -q'. These Og operators have to be expressed in terms of the §2; operators

given in Eq. (3.30), accomplished in the following. First, the Oﬁ operators are written in
terms of the W; operators given in Eq. (3.29). An easy way to do this is that one rewrites
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the W, operators as combinations of oy - q, o2 - q, o1 - ' and o> - ¢/, then inverts the

expressions and applies them to the 05 operators. This gives
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" (¢” + ¢* — 2¢'q) -
(1—-12) *
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L1 2m — E'+ E om+ FE — E
¢*+q —2qu){(m T E) e, Bt Vw2 4 awrw
(2m — E’+E)W’2 (2m+ E' — E) W?
T _oww-L
[ qIZ * 2m q2 qq
2
U +(q + )qu)} W,
2m—-E+E) ., (@nmn+E-E)_,
__ 12 2)2 _ 4q2g2~2 w2 — W
4\/(q +¢?) qu{ o =
B (2m—E'+E)W’2+(2m+E’—E)m2_2WW
2m q° 2m ¢ qq
(¢” — ¢°)
XM= | We (C.10)

+[5m® + 4m(E' + E) + 3E'E + ¢'07] ¢ ¢’
+ (2m* —4E'E — B” — E* = 2d'q7) W'W('qy

L 1
Al Erwe s pen] L,
—i{(3m® ~ B'E — E" — B — {q) W'W

I
5m’” +4mE'+E)+3EE+qq7]qq7}2 1—72 W,

+|
{[mm +8m(E" + E) + 6E'E + 2¢q q7] ¢*¢ (1 72)
+ [(27” — E'+ E)*W"™¢ + (2m + E' — E)*W?¢”

2l - (7= B W]}

+{(2m — B'+ E*W"? + (2m+ E' — E)*W? — 2 [4m® — (E' — )] W'W
2 2

+ + Y
2 2 )
> +(2m+ E — E) ?—2[4m —(E'—E)]W’W—q,q]

— [(Qm — E'+ E)?

(¢” +¢* —2¢'qy) } (¢ + ¢ +2007)
4

(1—7%) 16m?
+{(2m — E'+ BW? + (2m+ E' - ByW?* + 2 [4m? — (E' — E)| W'W/
12 2

w v
7+ @m et B - B 5 -2 [4m® — (E' - E)?] W’W%]

— [(Qm — E' +E)?

2 2 2q' 12 2_2/
N Ul qu)}(q +¢* — 2¢'q7) W,

(1—-192) 16m2

—{(Qm — E'+EP*W"” - (2m+ E' — E)*W?
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2 li 2W2 2 ! 2 ! Y
—+(2m+ E' - E) ?—2[4m — (B —E)]WW%

— [(Qm — E' +E)?

. (¢% - ¢) } \/(qa +q2)? — 4¢2¢>?

T T W, (C.11)

Next using the transformation given in Eq. (3.31) and discussed in detail in Appendix B

the expression for the Og operators in terms of the ); operators are obtained as

Ops = W2ql2(Ql - 293) + Wl2q2(Ql - 296) + 2W,Wq,q94

—W'W¢'qy(2Q — Qo) — W'W¢q q7(§22 — 203 — 2Q6 + 2Q5) (C.12)
O, = —W"W2Q, — ¢*¢*(Qy — 203 — 296 +4Q5) + 2W'W (' g

+W'Wq qv(2Q — Qo) + W'W ¢ qV(QQ — 203 — 2Q6 + 2Q5) (C.13)
Ope = W W2Q, + ¢%¢%(Qy — 2Q3 — 206 + 4Q5)

W2 (38 — 2y + 296) + W2 (38 — 2Q, + 2€03)

HAW'W Q4 + AW'W ¢ = (Q2 — 203 — 20 + 2Q5) (C.14)
Oy = W,;: v ¢ (0 — 2Q3 — 2Q6 + 49Q5) — W’2W2£21E,+ET_2m + 2W'Wq ¢

WG (39 — 20, + 205) 2 _25 +E)

+W2q2(30 — 29, + 2Q5) (2m +2Z —B)

+W'Wq'qy(Qe — 2Q1) + 3W'Wq q7(§22 — 203 — 206 + 295) (C.15)

1
Ou = WEW2 Qo [5m” — 4m(E' + E) + 3E'E]
1

+ [5m” + 4m(E' + E) + 3E'E| (@ — 20 — 205 + 405

1
_W'Wq'q 22 5 (Qy — 2Q3 — 2Q6 + 2Q5)

m

1
+W2¢*—(2m — E' 4 E)*(3Q; — 2Q, + 2Q)

dm

1
+W2 ,24 (2m + E, E) (391 — 292 + 293)

1
+W'Wd'gs— 2m? — (B' - E)* - 6E'E|

1
+qlq72—nl2{WI2W2QI + ql2 2(91 — 293 — 296 + 495)

1
+W’W [3m2 — E(EI — E)2 + 3E,E:| (QQ — 291) — QWIWQIQQ4}

1 3
(o [5m2 (B - By - 3E’E] (Q — 205 — 206 + 205)



241
1

W'Wq?¢* 7" =— Q2 — 201). C.16
+ a5 (s 1) (C.16)
This task can also be done with help of symbolic manipulation packages, such as mathe-

matica.
One sees that the azimuthal behavior of the matrix elements V73!(q',q) of the
potentials in Eqgs. (C.1)-(C.3) in the momentum-helicity basis is just the one described

in Eq. (3.52). As shown in Chapter 3 this behavior leads to simplification in solving the
LSE.
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Appendix D

THE ARGONNE AV18
POTENTIAL

The OPE part V™(q/, q) and intermediate- and short-range part V?(q’, q) of the Argonne

AV 18 potential are given as

V™(d',q)
Vi, q)

where

Vi(d,

Vi (d
Vst (qla
Vsét (qla
Vsi(d'
Vi (d,

V& (d

q)

,q)

qa)
qa)
q)

q)

,q)

Vild,a) + Vi (d, q) (D.1)
Vé(d,a) + Vé(d,a) + Vi(d,q) + VE(d, q) + VEi(d,q), (D.2)

I - o 2 T

ﬁoss/o dr rjo(pr)VE(r) (D.3)

1 . [ _ i

ﬁot /0 dr 25 (pr) Vi (r) (D.4)

1

550s [ dr rja(pr) V5 (1) (D5)

1 ooy

2—7r20t/0 dTTJQ(pT)VS'ft(r) (D.6)

WOzs 7 dr i or Vi) (D.7)
1 gy [ ,

W O [ dr rju(pr)VE () = 5508 [~ dr rialor) V() (D8)

. \ 1 . [ . \
O [T PV ) - 5508 [ dr i ien) Vi), (D)

where p = |q' —q|. As shown in Eqs. (4.11)-(4.17) the Oﬁ operators (= ss, t, ls, 12, [s2)

are combinations of projected-spin operators along some axes, for example o - q. These

05 operators have to be expressed in the €2; operators. In similar way to that for the

Bonn OBEP, first we rewrite the Oﬁ operators in terms of the W, operators. We obtain
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W, (D.10)
W B l(ql _ q)Z(ql + q)2 W B l(qﬂl + 8ql2q272 _ 10q12q2 + q4) W
37 ?¢ (2 — 1) 47y P2 —1) 5
1/(@2 +¢)? - 4% (d* — %) W -
+Z 202(~2 _ 1 6 (D.11)
¢?¢*(v* — 1)
;—pq,q 1- ’72W2 (D'12)
2 !
T vy, (D.13)
1202(1 — ~2
LZMWI (D.14)
P
L, i 1 1(d +a)’(¢ =9y -9
“NdeyW1 — ~¢'q\J1 — 2Wa + =¢'¢g7W5 — = W
Pl ¢7Wa— 14 VW2 + Sd'ayWs — ¢ JaE— 1) 4
CL(d = a)*(d + (g +g) W,
8 7q(v* — 1)
17(q% = /(@2 + ¢2)? — 4¢7 >y D1
< —— Wi (D.15)
7q(v* —1)
q/2q2
2 (1-9) (W1 + W), (D.16)
(d-a)® = ¢"+¢—2¢qy (D.17)
v = qq=cost cosf +sinf sinf cos(¢’ — ¢). (D.18)

Next by means of the transformation given in Eq. (3.31) and discussed in detail in

Appendix B we get the expressions for the 05 operators in terms of the {2; operators as

Oss = Ql (D]_g)

1
Ot = ? [6(]’(]94 + 2(],2(92 — 393) —+ 2(]2(92 — 396)

1
—q' gy — 3q'q§(92 —2Q3 — 206 + 295)] (D.20)
A qq 1
Ols = —l QQ - 294 - —(QQ - 293 - 296 + 295)] (D21)
2p gl
N 2q'
oL = qp‘”Ql (D.22)
A 1
oy = 5 [°¢ (1-7)] (D.23)
N 1
Ols2 = — ')/QQ + —(QQ + 295 - 293 - 296) (D24)
p B
0 - L¢ [(1=92) Q2 + 272 — 20 (D.25)
152 — 20? Y 2 Y3iq 5| - .
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Concerning azimuthal behavior one can check that the matrix elements V3! (q’, q) of

the potential given in Eqs. (D.3)-(D.9) in the momentum-helicity basis have azimuthal
behavior as described by Eq. (3.52).
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Appendix E

NUMERICAL REALIZATION FOR
NN SCATTERING

In this appendix we describe the evaluation of integrals, the way we treat the principal
value singularity and solve the LSE’s given in Eq. (3.73). We make also a note on the
numerical method in performing the Fourier-Bessel transformations given in Eqs. (4.11)-
(4.17).

E.1 Integration

In solving the LSE’s in Eq. (3.73) altogether we have integrals in three variables ¢”, 6"
and ¢". However, the integral in the variable ¢”, which is given in Eq. (3.70), can be
evaluated independently. Therefore, the LSE’s to be solved are two-dimensional (2D)
integral equations in the variables ¢” and 6”. We evaluate these integrals by means of a
numerical integration (known also as quadrature) method. In our case Gauss-Legendre
quadrature [66] is most suitable. For clarity of description all integrals in this subsection

will be written as
b
I= / dx f(z).

The integration points and weights of the Gauss-Legendre quadrature are defined for
an integration within an interval [—1,1]. Therefore, these points and weights must be
mapped onto the interval [a,b] of the evaluated integral, as described in the following

equation

1= [l = [ i)
= szf(xz) = > vif(y), (E.1)

)
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where the y;’s and v;’s are points and weights of the Gauss-Legendre quadrature, and the
x;’s and w;’s must be the corresponding points and weights for the evaluated integral,
respectively. For the 6”- and ¢"-integrations we use a linear mapping given as

b—a b+a
Ty YT

For the ¢"-integration, which is within the interval [0, o], we use two different mapping

a

w; = %(b ~ a)uy. (E.2)

schemes for the Bonn-B and the AV18 potentials presented in the next paragraphs. The
Gauss-Legendre quadrature points are more dense at both ends than in the middle of the
interval. This is of special advantage for the #”-integrations, since the T-matrix behaves
more peaked around forward and backward directions.

For the ¢"-integration in case of the Bonn-B potential the y;’s and v;’s are mapped

onto the interval [0, co] in steps described as follows:

1= [T = [ dzf) = [ dusy)
= szf(fﬂz) = Zuzf(zz) = sz‘f(yi), (E.3)

where the z;’s and u;’s are points and weights of the integral with the interval [0,1]. In
the rightmost equalities a linear mapping is applied. Next the z;’s and u;’s are mapped

onto the interval [0, co] by employing the following mapping

x; = ktan (gzl> w; = j Ui (E.4)

With this mapping the integration points are distributed such that the density decreases
as the momentum increases, since the T-matrix is getting smoother and falls off at higher
momenta. This behavior of the integration point density is controlled by the constant k.
Smaller £ increases the density of points at lower momenta. The typical value of k& is 1000
MeV/c or 5.068 fm ™!, depending on the units used.

For the AV18 potential the ¢”-integration is terminated at a certain point ¢3. This
termination is unavoidable since the potential is obtained by performing a numerical
Fourier-Bessel transformation of the AV18 potential in configuration space, which is
difficult to realize for very high momenta. We found out that the integral interval can
be safely cut off at g3 = 150 fm~'. The interval [0, g3] is splitted into two intervals [0, g]
and [ge, ¢3] representing lower and higher momentum regions, respectively. In the higher
momenta interval [ga, 3] we use a linear mapping as given in Eq. (E.2), with a, b being
replaced by ¢z, ¢3. In the lower momenta interval [0, ¢2] a hyperbolic mapping given in

the following is employed:
T 2
G- B -G-8

(E.5)

xT; =
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Here ¢; is the momentum, where the interval [0, go] is splitted into two intervals [0, ¢i]
and [qy, g2] of equal number of points. The typical values for ¢, and g, are 3 fm~! and 10
fm~!, respectively.

For performing the above mentioned numerical Fourier-Bessel transformation to obtain
the AV18 potential in momentum space we employ Filon’s quadrature method [67]. This
method is proven to be accurate for integrations of strong oscillatory functions such as
the ones in Eqs. (4.11)- (4.17) for large values of p. And compared to another powerful
method, for example the Simpson’s rule, it needs less integration points. For small p and

p = 0 we use the Gauss-Legendre quadrature with linear mapping.

Now we would like to give the number of integration points for all the ¢”-, #”- and
¢"-integrations we have. To obtain these numbers we check for some lower partial waves
up to 7 = 4 the convergence of phase shifts. The numbers of integration points mentioned
in the following are sufficient to achieve a convergence within four digits after the decimal
point. This means the large phase shifts converge within 6 significant figures and the

small ones 4 significant figures.

The original ¢"-integration within an interval [0, 27] is rewritten within an interval

[0, 5] as shown in the following notation:

I = /% dg" f(cos(¢' — ¢"))em™ @ —¢")
0
2
— /0 d¢llf(COS ¢ll)eim¢n
N /0 d" { f(cos ¢")e™ " + f(— cos ¢")em@" )}

= /Og dg" {f(cos ") (eim¢" + eim(gﬁ,w,))
+ f(—cos¢") (eim(¢"+7r) N eim(w—df’))} | -

The second equality is justified by the periodicity of the integrand within 27. In this
way the number of integration points can be reduced. For both potentials Bonn-B and
AV18 ten integrations points are sufficient. In case of the §”-integration it turns out that
for the Bonn-B potential one needs at least 32 integration points, whereas for the AV18
potential one can take 24 integration points. The ¢”-integration for the Bonn-B potential
requires 72 integration points in the S = 0 case and 48 points in the S = 1 case. For the
AV18 potential both in the S =0 and S = 1 cases 50 integration points are required for
the lower momenta interval [0, ¢o] and 22 points for the higher momenta interval [go, ¢3].
Clearly one needs more integration points at lower momenta, where the T-matrix is not

smooth.
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E.2 Principal Value Singularity

The free propagator G§ (E,) given in Eq. (2.12) for an outgoing wave can be written as

1 P
G (E,) =i = —imd(E, — Egn E.7
0( l]) 61—1;% Eq +7,€ o Eq” Eq o Eq” a ( q q )7 ( )

where P in the first term in the last equality stands for the principal value part. This
term is singular at £y = E,. In the ¢"-integration of Eq. (3.73) this singularity occurs at
q" = q. We treat the singularity problem by employing a reduction method [68] described
in the following.

Consider the following principal value integral

Pw?f P’ f(x)
[= / dr 20, (E.8)
where the integrand is singular at = a. This integral can be rewritten as
Pa*f(x) a? f
I= / dz —332 / o= :132’ (E.9)
since the second term equals zero. Next we treat the singularity by evaluating the integral
as ) )
I :/ g2 f W) = afla) (E.10)
0 a? — z?

Thus, the numerator vanishes at + = a and the integrand is well defined at x = a. In case

of the AV18 potential, where we do not integrate to oo, the integral is evaluated as

I= /OM da:x2f(22) :;’zf(“) - %af(a) In (?\j . Z) , (E.11)

where the second term results from

- /OO dx @ fle) .

M a? — x?

E.3 Solving the Lippmann-Schwinger Equation for
the T-Matrix

In this subsection we describe how the LSE’s given in Eq. (3.73) are solved to obtain
the T-matrix elements 775 (q’,q). For S = 0 the LSE is an uncoupled equation and for
S =1 we have for each initial helicity A = 1,0 two coupled equations for final helicities
A" =1,0. In favor of simplicity we express the LSE in the following notation:

mF/ I AT AT QI AT

" " //2 0’ A'q" 0" A

Tq’G’A’ = IelAI =+ hm E / do / d —q e 2 TIIGIIAN, (E12)
A”
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suppressing all the parameters: spin S, isospin ¢ and parity 7, as well as the initial

variables: helicity A and the momentum’s magnitude ¢, except the one in the propagator.

We choose the interval for the ¢”-integration as [0, M| instead of [0, oo] to make it more

general, since for the AV18 potential the integration is terminated at M = gs.

We write Eq. (E.12) in terms of a principal value part and a delta function and then

treat the principal value singularity by the method given in the previous subsection:

quglA/

= V’@’A’
_|_Z 0// d " //2 P s (5( 2 12 F T
_q”2 molq q ) m qO'N qe" AL grer AT
AV
= V’@’A’
—|—Z/ 0” [/ d ”q mF’G’A’ ”9”/\”T”9”A” —q mFIGIAquHAHT NG
I q2 q//2
1 M —q .
_ 5 {ln (m) —+ Z’ﬂ'} qqulalA/qguAuqullAII] . (E13)

Numerically this equation is evaluated as

quglA/

V’H’A’
q mFlglA/ ”0”A”T”0”A” — q2qu’0’A’q9”A”qu”A”
+ Z Z Wer Z Wer 2 n2
AT q" q° —q
1 M —q
- = ln —_— +7,7I' mFIIl " //T N
2{ <M+q> }q q'0'A'qf" A qu]
VI@IAI
q mFlalAl HQHAHT//(QHAH — q2qu’e’A’qG”A”TqG”A”
+ Z Z Z Wer Wy 2 n2
A9 g #£q qc —(q
M —
_ Z Z wel/— {ln (M > + Z’ﬂ'} qqu’ﬂ’A’qe”A”qu”A”
AITogr
-V(-IIQIAI
wgllwq// q”2qu’0’A’q”9”A” TquauA//
+ Z Z Z 2 M2
A" 9" g'#q q q
wquq 1 M — q 1 .
_ Weor - + — ln ( > + — T qmF 19’ A/ guAHT N
;; {q%;qfﬂ—qﬂ 2 \M+q) 2 e
-V(-IIQIAI
w //q wq”’q ]_ M —(q ]_ A -|
+ZZZ{H g —0grg D 2+—ln< )—l——m
AT q// [ 2 (I" qm#q (]2 - q”l 2 M + q 2 J
Xwguq qu’H’A’q”@”A”Tq”&”A”; (E14)

where wgr and w,» are the weights for the 6”- and ¢"-integrations, respectively, and

Sq”q = (]_ —

8q7q)- Let us now simplify the notations, define « for the combination ¢'¢’A’,



252 E Numerical Realization for NN Scattering

B for ¢"0"A" and Y4 for Yo0n Yogn 3o, Next resolving Eq. (E.14) with respect to Vg
gives
> AasTs = Va, (E.15)
g
with
werq"

Aaﬂ = 604/3 - [5q,,q qQ o q/[2

— Sgrq {q%q % + % In (% n Z) + %WH werq"mFos.  (E.16)

Equation (E.15) is a matrix representation of a system of linear equation, with the size
of the symmetric matrix A being (ng x ngr)?, where ng and ngs are the numbers of ¢"-
and #"-integration points. A system of linear equations can be solved using methods like
the Gaussian elimination and the LU decomposition, which is better than the former one
[66]. Some ready-to-use routines collected as a library such as Lapack and NAG libraries
are also available at computing centers, which proved to be powerful. The Lapack routines
can also be downloaded from the site http://www.netlib.org/. In our calculations we use
one of the Lapack routines called ZGESV.



Appendix F

TWO SUCCESSIVE ROTATIONS

In Chapter 6 we faced two successive rotations, applied to the momentum-helicity states.
Here we evaluate two successive rotations in momentum space and in spin space. But we
firstly give a few basic definitions and relations required in this appendix. See Refs.[32, 31]
for more details.
A rotation of a system (a state) is performed by means of a rotation operator R(p)
defined as
R(p) = R(#00) = e~ /=070 (F.1)

where J,, J, are the z- and y-components of the angular momentum operator J and (6, ¢)
the rotation angles and the direction of p as well. The rotation operator R(p) works on

the angular momentum state |zjm) as
R(p)|zjm) = [pjm). (F.2)

Here |pjm) is the rotated angular momentum state (shorted as the rotated state), given

asS
bjm) = R(p)|zjm)
= Y |zg'm!)(zg'm!|R(D)|zjm)
jlml
= Y D). (D)|zim), (F.3)
where
D} ,..(B) = Dl,..(600) = (zjm/|R(p)|zjm), (F.4)

which we call the Wigner D-function. We see that R(p) conserves j. In the following
text we use Ry (p) and Rg(p) for rotations in momentum space and in spin space, with

J being replaced by L and S, respectively. Thus,
Ry(p) = Ry(¢00) = e™"=0e7the0 Rs(p) = Rs(¢00) = e %70, (F.5)
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A rotation R(«af7) of a state |zjm) corresponds to a change of the Cartesian coor-
dinates r describing the state through a rotation matrix M (af7y). The new Cartesian

coordinates r’ are related to the old ones r as
r' = M(aB7)r. (F.6)

The rotation matrix M (af7v) is given as

M(afvy)r = My (v) My (B)M,(a)r, (F.7)
with
cosa sina 0 cosf 0 —sinf
M,(a)=| —sina cosa 0 My (B) = 0 1 0
0 0 1 sinf 0 cospf
(F.8)
cosy siny 0
Myi(y) =] —siny cosy 0
0 0 1

Here M, («) represents a rotation of the coordinate system O through an angle o around
the z-axis, M, (f) a rotation of the rotated coordinate system O’ through an angle
around the rotated y’-axis, M, () a rotation of the rotated coordinate system O” through
an angle v around the rotated z”-axis. Thus, the rotation matrix M (af7y) represents
three successive rotations, which bring the old coordinate system O to the new one O".

It follows that

M (af)
COS (v €OS [3 oSy — sin qvsin vy sin avcos S cosy + cosasiny  —sin 3 cosy
= | —cosacosfsiny —sinacosy —sinacosfsiny+ cosacosy sinfsinvy
cos asin 3 sin asin 3 cos [
(F.9)

F.1 Two Successive Rotations in Momentum Space

Let us consider a momentum state |p) with p pointing in (6, ¢) direction, expanded in

partial waves as

p) =) Iplm)Y};, (6, ), (F.10)
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where |plm) is defined to be quantized along the z-axis. Now take a special direction
p = z. The momentum state |pz) is given as

20+ 1
A

pz) = 3 [plm)Y;;,(0,0) = 3 |pl0)

Im [

(F.11)

Applying to the state |pz) a rotation operator Ry (p) given in Eq. (F.5) leads to

Vs 2+ 1
Ri(p)lpz) = Ri(¢00) Z|pl0 \/:
/ ~ R 204+1
= 2. IpI'm)(al m|RL(¢90)|zm>\/;
[ I'm

= o) D040 A+l

4
= Z|plm lm 7 )
Im
= Ip), (F.12)

where we have used the relation between the spherical harmonics and the Wigner

[
Vi(0,6) = \[ 2 Dy (690). (F.13)

Thus, R, (p) rotates the state |pz) to become the state |p).

D-functions given as

Next we apply to the state |p) an inverse rotation operator R;'(p') = RI(p') =
Rp(0,—0",—¢'). We firstly take a look at the definition of the spherical harmonics

}/2 m/(eli) ¢II):

Yo (67, 6") = (p" |2l'm’)
= (p"| RL(D") Ry (D)|2l'm')
= (R(p")p"| R(p')|2l'm’)
= (p|p'lI'm), (F.14)
where we have defined the p direction as to be connected to the p” direction according to
[p") = RL(D)[D)- (F.15)

Hence, the spherical harmonics Y}, (6", ¢") can be obtained as a representation in p of
the angular momentum state |p'l'm') with the quantization axis in the p’ direction. Using
Eq. (F.14) we obtain®

RL(P)p) = R(0,—0,—¢") > |plm)Yy:, (0, 6)
Im

'Tn obtaining Eq. (F.19) one an also use the following equation [31]

E/Z’M’ 7 ZDmm’ Oéﬁ’)/)lfy ( QS) (F16)



256 F Two Successive Rotations

= 2> Ipl'm!)(@l'm/| Ry (0, =0, —¢")|2lm) Y7, (0, )

Im U'm/

= DD Ipl'm/)(2l'm/| R (0, -0, —¢') |2lm) (2lm |b)

Im U'm/

= Z Ipl'm/{(zl'm/| R (0, —0', —¢") D)

= D Ipl'm' (R (¢'0'0)2l'm/| b)

I'm!
— Z |pllml> <f)/llml |IA)>
I'm!
Z |pl m l’m’ 0” ¢ )
— R(B")p2) (F.19)

Inserting Eq. (F.12) into Eq. (F.19) leads to

R} (0')R(D)Ipz) = Ri(D")|p2). (F.20)

Hence, we obtain that the two successive rotations R} (p')R.(p) applied to the state |pz)
can be replaced by the rotation Ry (p”). Consequently any number of successive rotations
in momentum space can always be replaced by one rotation with the right rotation angles.
The angles (6", ¢") of p” are determined by the angles (0, ¢) of p and (¢, ¢') of p’ as

cos@” = cosfcosf +sinfsinb cos(¢p — ¢') (F.21)
sin e = —cosfsinf +sinfcosf cos(¢p — ¢') + isinfsin(p — ¢'). (F.22)

Equations (F.21) and (F.22) are obtained from the rotation matrices of the Cartesian
coordinates, which correspond to the rotations in Eq. (F.20). Such a rotation matrix

M (afy) corresponding to R(af7) is given in Eq. (F.9).

which is obtained by applying the formal expression for a rotation of an angular momentum state given
in Eq. (F.2) to the spherical harmonics, which are eigenstates of the orbital angular momentum operator
L. The angles (¢, ¢') are connected to (6, ¢) according to

p') = Re(aBy)|P). (F.17)
Thus,

R (9")|p)

RY(6'6'0) Y |plm) Y5, (8, ¢)

lm

= > Ipl'm!)(@l'm! |R] (¢'0'0)|2lm) Y, (6, ¢)

Im I'm'

= Y |pl'm") ZD’* (¢'0'0)Y77,,, (6, 0)

U'm’
= Z |pl m Y'l’m’ (9”7 d)”)
l/ ’
= Rp(p")lpz). (F.18)
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F.2 Two Successive Rotations in Spin Space

One may think that analogously the rotation identity given in Eq. (F.20) also applies
in spin space. But this must be checked, since analogies do not always lead to correct
conclusions. Therefore, we evaluate two successive rotations in spin space, independent of
the evaluation in momentum space in the previous section. We use the rotation operator
Rs(p) given in Eq. (F.5). Thus, we compare the rotated spin state or the helicity state
|p"SA); given as

p"SA) = Rs(p")|2SA) (F.23)

with the rotated spin state [p”SA), given as
[B"SA)2 = RY(5") Rs () [25A). (F.24)

Note that here the relation between (6”,¢"), (¢',¢') and (0, ¢) given in Egs. (F.21) and
(F.22) is still valid, since this relation results from the transformation of the Cartesian
coordinates, which is the same in both momentum space and spin space.
The state |p”SA); is eigenstate of the helicity operator S - p” with eigenvalue A, as
can be shown as follows:
S-p"[p"SA)1 = Rs(p")S - 2RL(D")Rs(p")]2SA)
= Rs(p")S - 2z|zSA)

)
= A[p"SA),. (F.25)

Similarly it can be shown that the state |p”.SA), is also eigenstate of the helicity operator
S - p” with eigenvalue A:

S - 2R (p)Rs (D)) RE (D) Rs (p)|2SA)

S-p"[p"SA), = RL(P)Rs
L S - z|zSA)

= AIp"SA),. (F.26)
Moreover a scalar product of two states is rotationally invariant. Thus,
L(D"SA P"SA), =, (P"SA |p"SA), = (2SN |zSA). (F.27)

Therefore, it remains to find out whether the two helicity states |p”SA); and [p”"SA), are

just the same or are distinguished from each other by merely a phase factor.
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The helicity states |p”SA); and |p”SA)s are expanded in the spin states |zSA) as
p"SA) = Rs(p")|2SA)
= 3 [2SN') (2SN | Rs(¢"0"0)|2SA)
AI
= > |2SN)D3,(¢"0"0) (F.28)
AI
B"SA). = RL(D)Rs(p)[25A)
= Y RL(¢/'0'0)|2SN)(2SN|Rs(¢00)|2SA)
N

= Y |2SA) (2SN |RL(¢'6'0)|2SN) D3y (600)

AN
= Z|ZSA’ ZDNA, (¢'6'0) D3, , (¢00)
= Z|ZSA XA,A(gb"H" ) (F.29)
AI
where
Xua(9"0"0) =" D5y (¢'0'0) Dy (660). (F.30)
N

Therefore, instead of comparing |[p”SA); with [p”"SA)y we compare D7, (¢"0"0) with
X3, (¢"0"0), since these are known functions. We have two spin cases S =0 and S = 1.

For S = 0 the spin state is rotationally invariant and thus
Xoo(¢"0"0) = Dpy(¢"0"0) = 1 p"00)1 = [p"00)2 = |200). (F.31)
The Wigner D-functions obey a symmetry relation given as
D (aBy) = (=)™ D, (afy). (F.32)

Therefore, for S = 1 the case with initial helicity A = —1 can be left out and we consider
only six cases with A’ =1,0,—1 and A = 1,0.
The Wigner D-function D}, (¢60) is given as

—ipldcos@  _—igpsinf —i¢ 1—cos 0
e B) e V2 e 5

D' (¢00) = S\i;‘; cos 6 - Si;‘; . (F.33)
el 1—c2050 €i¢% el 1+(;050

For A = 0 it follows

/ / :
i 1+ cos @' Z¢sm9 sin cosf 4 e 1 —cosf" ;;sinf

2 VBTV 2 " e
—cosfsin @ + sinf cos ' cos(p — ¢') —isinfsin(¢ — ¢')}

Xo(00"0) =

L

1

_eiwu sin 6
V2
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= Dyy(¢"0"0) (F.34)
osin@ . sinf osinf' . sin @)
X&O(qﬁ"e"O) _ i 51\1/15 ezqﬁ% + cos 0’ cos @ + efzqﬁ %ew Si;li
= {cosfOcosf' +sinfsin b’ cos(¢ — ¢')}
= cosf’
= Dy(¢"0"0) (F.35)
o1 —cosf _. sinf sin€ o1+ cosf . sind
Xl //0// — i —i¢ o 0 —i¢ 1P
“10(0"0"0) e 5 ¢ NG NG cosf +e 5 ¢ NG
1
= 7 {—cos@sin@ + sinfcosf cos(¢p — ¢') + isinfsin(p — ¢')}
_ ei¢u sin 0”
V2
= D! ,,(4"0"0). (F.36)
Thus,
X10(4"0"0) = D},,(¢"6"0) p"10); = |p"10),. (F.37)

For A = 1 we obtain

w1 +cosf ., 14cosfl sinf sinf .v1—cosf ., 1—cosf
Xl //0// — i —i¢ —i¢p ip
11(9"0"0) e 5 ¢ 5t NG +e 5 ¢ 5
1
= 3 {(1 4 cosfcosb')cos(¢p — ¢') + sinfsinf'}
—% (cos @ + cos ') sin(¢p — ¢') (F.38)
ysing .14 cosf sin ¢ ysinf .1 —cosf
XL (0"0"0) = —e@ MY o +cosl —= +e e'?
01(925 ) \/g 2 \/i \/g 2
1
= 7 {—cosfsin@ cos(¢ — ¢') + sinf cos '}
+£ sin ¢ sin(¢ — ') (F.39)
w1 —cos® _. 1+cosfl sinf sinf w1+ cosf ., 1—cosf
Xl ni _ i —i¢ . —i¢ ip
Z11(9"0"0) e 5 ¢ 5 NG +e 5 € 5
1
= 3 {(1 = cosfcosf')cos(¢p — ¢') —sinfsin '}
—%(cos 0 — cosf') sin(¢ — ¢'). (F.40)

Hence, for A = 1 apparently we have

X1, (4"070) £ D}, (¢"6"0) p"11), # |p"11)s. (F.41)

The difference between Eq. (F.37) and Eq. (F.41) is at the value of A. And from Eq. (F.27)
we know that
[ XA (@"0"0)” = [Dya (6"0"0) 7, (F.42)
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which we also have checked using Eqgs. (F.33) and (F.38)-(F.40). Therefore, we can be
sure that X}/, (¢”6"0) is related to D},,(¢"6"0) by a phase factor. The phase factor must
depend on A and the set of angles (4,0, ¢,6'), and is independent of A’. The latter can
be understood as we see in Eqgs. (F.23) and (F.24) that there is no A’. We choose the

phase factor such that
Xia(@"0"0) = e Dy (¢"0"0), (F.43)

where Q depends on the set of angles (¢, 0, ¢',6') and is given through its tangential as

Im{X;,(4"0"0)} sin @' sin(¢ — ¢')
tan {2 = = . I'.44
an Re{ X} (¢"0"0)}  —cosfsinf cos(¢ — ¢') + sinf cos 0’ (F.44)

The 2 calculated in Eq. (F.44) is also valid for other combinations of A’ and A, since €2
is independent of A" and A. Equation (F.43) agrees with Eqs. (F.37), (F.41) and (F.42)
as well as Eq. (F.31) for S = 0. A further check shows that

Ui Uru 1 Url

XH(#"0"0) X1, (67070) = X4, (4"670) (F.45)
Urali Urli ]‘ Url

D}y (¢"9"0) DL, (¢"6"0) = 5 Dg,"(6"0"0), (F.46)

which is consistent with Eq. (F.43) as

X1, (¢"0"0) X1, (¢"6"0) = ¥ D}, (¢"6"0)D" , (¢"6"0)
1 Nl 1 7 Nl
S Xo (6"0'0) = SeD; " (8"0"0). (F.47)

After all these evaluations we summarize that

RL(P)Rs(D)|zSA) = ™ Rg(p")|2SA) (F.48)
D3 (¢"6"0)

We have restored the spin notation S, since Egs. (F.48) and (F.49) are general and hence
apply to arbitrary spin S, including S = 0.



Appendix G

NUMERICAL REALIZATION
FOR THE PROTON-NEUTRON
CHARGE EXCHANGE
REACTION

In this appendix we describe how to numerically calculate the Nd break-up amplitude
Up(p,q). As a reminder, the amplitude consists of three parts Uél)(p, Q), Ué2) (p,q) and
Us” (p, q) as

U(p,a) = Us” (p, @) + U™ (p, @) + Us” (p, ). (G.1)

These three parts are related to each other through permutations of the nucleons. The

first part Uél)(p, q) is given as

U(l)( ) = ( ) +Tl Ze*l (Aogp—Abor) 111 mim
0 pb,q - 4\/— T2+7'3 7'1 —T1 2 2 sl

X Z C lll, Md my — Mgy, ms + msl) Y2 JMg—m/l—mg (ﬁ/)% (71—,)

!
11 11
X Z (1 — (= S+t) C <§§t;7273> C <2 2t 7'1 , —7'1>
11 ,

xC ( =5, m52m53A0> c (2 S5 mlml A )

X Zd/\ol\ dA o (07) e ADTT (7 cos 0 B, (G.2)
with

Yy(7') = the deuteron partial wave projected wave function

T (p, 7, cos0'; E,) = the NN T-matrix elements
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1
T = 54 + qo (G.3)
1
T = —q-— 50 (G.4)
cosf' = cosb,cosb; + sinb,sin b, cos(p, — ér) (G.5)
N —AQ) E%:fs eiN(%_qﬁ”)d%A(@p)d%A' (0x) (G.6)
d3ip (0") ' '

The other parts USQ) (p,q) and Ué?’) (p,q) are obtained from Egs. (G.2)-(G.6) by applying

the following replacements

1 3 1

for Uéz) (p,a) : {7, m}{1,2,3} —{, m}{2,3,1} p— —§P - Zq q—p— 501 (G.7)
1 3 1

for U (p,a) = {m,m}pasy — {1.m}p1e P — —3P+74 4= -pP-a (G.8)

G.1 Momentum Addition

There are several additions of momenta in the formulation, see for example Egs. (G.3),
(G.4), (G.7) and (G.8). Thus, one has to find out the resulting momenta from these
additions by calculating their components. Since we are working with a spherical coor-
dinate systems these components are the magnitude, the angles 6 to the z-axis and the
azimuthal angle ¢. It is straightforward to obtain these components of the momenta as
shown in the following.

Counsider a momentum addition

C=A+B. (G.9)
The magnitude of C is given as
C =42+ B? 4 24BA - B (G.10)
with
A-B = cos 4 cosfp + sinf,sin g cos(pa — dp). (G.11)

The components of C, which are projected on the axes of a Cartesian coordinate system,
are given as

C, = Csinfgccospc = Asinflycosps + Bsinlgcos g

Cy, = Csinfcsingc = Asinfysin gy + Bsin g sin ¢p

C, = CcosO- = Acosl,+ BcosbOpg.

Thus, one can find the angle 6 as

(G.12)

(A cos 4 + B cos 93>
fc = arccos .

C
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The azimuthal angle ¢¢ is determined uniquely by its sine and cosine together, which are

given as
Asinf, cos ¢+ Bsinfpgcos ¢p
cos oo = -
C'sinf¢c
. Asinf,sin ¢4 + Bsinfpsin ¢p
sin e = - .
C'sinfc

We get the unique value of ¢ in the following way

arccos (AsinQAcosgAS;B;;inﬂgcosqﬁB) if sin ¢C’ >0
$pc = 2w — arccos (Asma“ = g“sitlg(fi“ bp cos ¢B) if sin e < 0 (G.13)
(1 —cospc)y if singpe =0

G.2 Integration

We consider the Nd break-up process, where in the final state only one nucleon is detected.
Therefore, to calculate the observables in the process we sum over all possible directions
of the other two nucleons. This is realized by integrating over the direction of the Jacobi
momentum p of the undetected 2N subsystem, as shown in Eq. (6.24).

The p-integration is two-fold, denoted as

m 2
1= ["do, [ doyf(6,.6,). (G.14)
0 0

To calculate this integral we use the Gauss-Legendre quadrature and a linear map-
ping as mentioned in Section E.1. We vary the numbers of integration points to test
the convergence of our integration, these are ngy, for the f,-integration and ngy, for the

pp-integration. We found that with ny, = 48 and ny, = 18 the integration converges.

G.3 Interpolation

To calculate Uy(p,q) one needs the NN T-matrix elements. Let us for example take
Tt (p, m, cost'; E,), which are needed to calculate Uél)(p, q) given in Eq. (G.2). The NN
T-matrix elements 173! (p, 7, cos 0'; E,) are ideally obtained directly from the LSE’s given
in Eq. (3.73). Thus, one first solves the LSE’s at various energies E, and initial momenta
7 of the two nucleon subsystem. Then for each pair of £, and 7 one knows the NN
T-matrix elements on certain grids in final momenta p' and cos”. Among the p'-values
is also the required on-shell value p. Next one uses the same LSE’s again to calculate the
NN T-matrix elements at the required angle cosf’. This would be the ideal procedure

and the same also to obtain the corresponding NN T-matrix elements for UéZ)(p, q) and
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Uég) (p,q). But it is not practical since very time consuming. Therefore, we think of a
more economic way and choose to interpolate the NN T-matrix elements from the ones
exactly obtained from the LSE’s, which are prepared before the calculations. Though the
NN T-matrix elements are determined by four arguments, for example p, 7, cos ' and E), in
Eq. (G.2), the interpolation is three-dimensional, since p and E, are related. In Eq. (6.48)
the relation between p and E, for the nonrelativistic case is given and in Eq. (6.127) for
the relativistic case. Thus, we interpolate along cos ¢, 7 and E), for Uél)(p, q) in Eq. (G.2)
and along the corresponding quantities for Uéz) (p,q) and Uég) (p,q).

We use the same interpolation method as the one used in Chapter 4 for the AV18
potential, that is the modified cubic hermite splines [44]. This is a one-dimensional inter-
polation method, but can also be used for a multi-dimensional interpolation, described as

follows: Using this method a one-dimensional interpolation is performed as
1
fl@i) = Sif (ylij) ; (G.15)
j=1

where f(z;) are the interpolated values at x; and f(y;,;) the known values at y;,. of the
function f. The spline coefficients \S; ; and the indices I;; are determined beforehand by
the sets {z} and {y}. Now, as an example of a multi-dimensional interpolation, a 3D

interpolation is performed as

4 4 4
f(xia Yi, Zk) = Z Z Z Sirsjssktf (UI”, Uliss ’U)[kt) : (G16)

r=1s=1t=1
Thus, in fact one performs three one-dimensional interpolations as shown in the following.

4 4 4

f(l‘i; Yijs Zk) = Z Z Z SirSjsSktf (UIW Uljs» wlkt)
r=1s=1t=1
4 4

= Y3 Sy (ur, v )

r=1s=1
4

— Z Slrf (UI”J Yy, zk)

r=1
We prepare a 3D grid of the NN T-matrix elements, obtained from the LSE’s given
in Eq. (3.73). We found that the ranges of the grid axes in Uél)(p,q), Uéz) (p,q) and
Uég) (p,q) are the same, as shown in the next section. Therefore, it is sufficient to show

here only the ranges of cos#', m and E,. The range of cos¢' is set to be from -1 to 1:
—1<cosf <1. (G.18)

The ranges of £, and m depend on the projectile’s kinetic energy FEj,. For reasons of

efficiency we prepare a grid such that it can be used for any value of Ej,;, within a certain
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range, which we are interested in. The highest Ej,, we are interested in is 500 MeV, where
there are experimental data to compare with, and we choose the lowest Fj,, to be 5 MeV.
Thus, for

5 MeV < B, <500 MeV (G.19)

we obtain the ranges of F, and 7 as

2.5-107" MeV < E, < 335 MeV (G.20)
30.66 MeV < 7 < 982 MeV. (G.21)

See the next section for the connection between Ej,, and E,, 7, and the determination of
these ranges.

The cos #'-points within the range given in Eq. (G.18) are determined simply as the
Gauss-Legendre quadrature points. We found that 80 points are sufficient for the inter-
polation to reach a certain accuracy given in the next paragraph. As the NN T-matrix
elements change smoothly with the energy and are getting smoother as the energy raises
we distribute the E,-points within the range given in Eq. (G.20) exponentially as follows:
Since in a lower energy region the NN T-matrix elements change stronger than in a higher

one we devide the range in two regions as
Epin < ESY < Enia Emia < E? < Epaa, (G.22)

where E,in = 2.5-107* MeV, E,.e = 335 MeV and E,,;q some energy between E,,;, and

E s Next EI()I) and EISQ) are calculated as

1 _ W 2 _ 2@
Ep,i = e Ep,i =e%i | (G23)
with
o) = ZLAW 4 BO A® =i Law - BO =By, (i=1,..,m) (G.24)
7P = LA® 4 B, A® —Inlues BO) B, (i=1,..,n) . (G.25)

Here n; is the number of Ej-points in region 1 and n, in region 2. In this way the natural
logarithm of the E{?-point (i = 1,2) varies linearly in A" and hence the E{)-point varies
exponentially in AW We use ny = 16 and ny = 24, with E,,;4 being fixed to 0.5 MeV.
This value turned out to be our of suitable choices to keep the strong variations of the
NN T-matrix at small energies and its interpolation under control. Thus, we put a higher
density of points in the lower energy region. For the interpolation along m we determine the
m-points within the range given in Eq. (G.21) by means of the Gauss-Legendre quadrature

points and a tangential mapping given in Section E.1, with the parameter £ being equal
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to 5.068 fm ! and the number n, of m-points to 120. From the resulting list of m-points we
discard m-points below 30.66 MeV and beyond 979.79 MeV, and then replace the special
m-point 979.79 MeV with 982 MeV. There are left 50 points of 7 from 30.66 MeV to 982
MeV.

We test our 3D-interpolation by comparing with 600 data of the NN T-matrix
elements, which are calculated exactly using the LSE’s given in Eq. (3.73). Thus, we
calculate the relative differences between the interpolated and the exact data. The 600
data are calculated for 30 different scattering angles from 0 to 7, 10 NN c.m. kinetic
energies from 3 - 10~* MeV to 330 MeV and 2 magnitudes of the initial momenta. The
latter are chosen to be close to the corresponding on-shell nonrelativistic momenta of the
chosen 10 energies. With the interpolation parameters given in the previous paragraph
we obtain that for the singlet spin states all the relative differences are below 1% for
the two NN potentials we use; these are the Bonn-B and the AV18. For the triplet spin
states there are 60 cases for the NN potential Bonn-B and 34 for the AV18, where the
relative differences are larger than 2%. All other relative differences are less than 2%.
The 60 cases for the Bonn-B and 34 for the AV18 occur in two cases, i.e. near the points,
where (1) the data change sign while their curves are crossing the zero line and (2) the NN
T-matrix elements vary very sharply, for example, at the forward and backward directions.
The test, hence, shows that the interpolation grid is acceptable.

Similar to the case of the NN T-matrix elements, it is also not practical to calculate the
deuteron partial wave projected wave function 1 (') exactly at the value of 7’. Therefore,
we interpolate ¢;(7') from the exact ones, obtained from the deuteron equation. We
prepare a grid of ¢;(7') along 7’. The n'-range depends on Ej,, and is the same as the
ranges of the corresponding quantities for USQ) (p,q) and Ué?’) (p,q) as shown in the next
section. For Ejy, from 5 MeV to 500 MeV it is required to have the 7’-range as

0.05 MeV < 7/ < 982 MeV. (G.26)

We determine the 7’-points within this range using the Gauss-Legendre quadrature points
and a hyperbolic-linear mapping given in Section E.1. Recall that this is the way by which
we solved the deuteron wave function in Chapter 5. Here we use the parameters for the
mapping as ¢; = 0.1 fm™!, ¢ = 1.5 fm~!, ¢3 = 5 fm~!, 24 7'-points between 0 and gy,
and 24 7'-points between ¢, and ¢3. We replace the first point 5.099 - 102 MeV with
5-1072 MeV and the last point 984.98 MeV with 982 MeV. We test the interpolation by
comparing with a more dense distribution of the deuteron partial wave projected wave
function within the range given in Eq. (G.26), that is with 126 data. The test shows very

small relative differences, which are below 0.1%. There are very few cases (less than 10
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cases), where the relative differences are greater than 0.1% but below 2.5%. But these
occur near the points, where the function changes sign while crossing the zero line. Thus,

the test gives a good result.

G.4 Momenta and Energy Ranges for the Inter-

polation

To prepare the grid for the interpolations mentioned in the previous section one needs
to know the lower and upper limits of the grid axes. For the grid axis cosf’ and the
corresponding axes in UéZ)(p, q) and Ué3)(p, q) the lower and upper limits are best set to
be -1 and 1, thus all possible values of the cosines are covered. For the grid axes E,, 7
and 7" and the corresponding axes in Uéz) (p,q) and Ué3)(p, q) the lower and upper limits
have to be found. We calculate these limits firstly for calculations of Uy(p,q) without
relativistic kinematics. After that we test if the limits can also be used to calculate
Uos(p,q) with relativistic kinematics. This is necessary, since energies and momenta in
these two formulations have different ranges of values. Finally, we take a grid, which can
be used for both calculations with and without relativistic kinematics.

Let us define the new notations E%)N, QW ng,), where ¢ = 1,2, 3 refers to Uél)(p, Q),
U[§2) (p,q) and Ué?’) (p,q), such that

EGN = E, QW =1 QY =x'. (G.27)
Thus,
(WY = Eat 2 (@)
for g (p,@) = ¢ QY = |Sa+a (G.28)
L QSTI’) = |74- %QO‘
2
Efy = But i (q%— (p—3a) )
for Ui (0,@) = { Q@ = | (p—1La)+a (G.29)
| QY = |-(p-iq)- %qo\
( 2
EQy = Eit+ 2 <q§— (p+3aq) )
3
| QY = p+iq- %qo\

where the magnitude ¢y of the relative momentum of the projectile to the deuteron is

2 /8
= —kijup = 4/ =mE,. G.31
qo 3 lab 9m lab ( )

given as
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To calculate the lower and upper limits of E](\Z,)N, QW, QS,) we need to know the ranges of

q as well as of ‘p + %q‘ The g-range is known from the relation between ¢ and p given in

Eq. (6.10) to be
/ 4
0 S q S Q(z) + ngd = Gmaz- (G32)

Thus, ¢ is maximum if p is minimum and vice versa. The lower and upper limits of

‘p + lq‘ are given as

1

1
4+ = = _Z =0 G.33
1 1
‘p + 54 = (p + §q> = Gmaz- (G.34)

Equation (G.33) occurs at ¢ = /3¢ + mEy due to Eq. (6.10) and Eq. (G.34) is obtained
using Eq. (6.10) in the following way:

1 3 1
y = p+—q=\/z(q3—q2)+mEd+§q

2
dy C B3g+23 (@B - ) +mE)|
dq Ymaz 4:\/§ q[% - q2) + mEd

Ymazx

— Q|ymam - V QO + mEd Qmaa:
Ymaz = H QO + mEd = Gmax-

In summarizing we have the ranges of ¢ and ‘p + %q‘ as

1 4
p+ Eq‘} <@+ ngd. (G.35)

OS{q,

Equation (G.35) together with Eqs. (G.28)-(G.30) tell us that the lower and upper limits
of E N QW) Qwi, are the same for all ¢ = 1,2,3. Let us take ENN,Q Q b given in
Eq. (G.28), since they have the simplest form, and then drop the superscript (1). The

lower and upper limits of Eyy, @, Q. are obtained to be

3
Exnmin = Eq+-— (¢ — ¢ =0 G.36
NN, d + m (qo Qmaaj> ( )

3 3
Ennmar = Eg+-— (@2 — ;) = Eqg+ —¢ :
NN, dt m (qO qmm) dt 4mq0 (G 37)

1 1/ 4
Qw,min = —SGmaz + 9 = —5 q(2) + omby + qo0 (G38)
2 2 3
1 1 [, 4
Qn,maw - §Qma:1: +qo = 5 q + ngd + qo (G39)
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1

1 / 4 1
QW’,max = Gmazr + §QO - Q(Q) + ngd + 5610- (G41)

To simplify we can neglect the deuteron binding energy E; in Egs. (G.36)-(G.41).
Neglecting E,; does neither raise the minima nor lower the maxima of Eyy, @, Q. In
fact it lowers the minima and raises the maxima of Eyy, Q,, Q.. Therefore, it is justified
to neglect E,; even for lower projectile’s laboratory kinetic energy Ej,;, and thus lower g,
since the interpolation grid can still be safely used. We obtain after neglecting E; the
ranges of Eypy, Qr, Q@ to be

3

1 3
S0 < Qr <5 (G.43)
2 2

3

Now we check if the ranges of Eyn,Qr, Q@ given in Eqs. (G.42)-(G.44) can also be
used to calculate Uy(p, q) with relativistic kinematics. Finally we take a grid, which can
be used to calculate Uy(p, q) with and without relativistic kinematics. It is sufficient to
check only the maximum of Eyy, defined as Ennmas, and qo, for which we define the

corresponding relativistic quantities as E]((;?V,max and ¢\ If Ey N,maz 11 Eq. (G.42) is larger

(r)

than or equal to the corresponding Exy ..., then the Eyy-range given in Eq. (G.42) can

be used to calculate Up(p,q) with and without relativistic kinematics. If ¢y given in
Eq. (G.31) is less than or equal to the corresponding q[()r) we use q[()r) to calculate the
maxima of (), and @), and ¢y to calculate the minimum of (),. Here we keep FEjy
as denoting the laboratory kinetic energy of the projectile, in contrast to what we did
in Section 6.3, where we redefined FEj,, as denoting the laboratory total energy of the
projectile.

Referring to Eq. (6.127) the relativistic kinetic energy E](@V in the 23-subsystem is

given as
EV) =2y/m? + p? — 2m = My; — 2m, (G.45)

where Ma; is the invariant mass of the 23-subsystem. As can be checked in Eq. (6.104)

M3 is connected to the invariant mass M, of the 3N system as

My = \Jm? + ¢ + /Mg, + ¢ = \/9m? + dmEy, (G.46)

where the rightmost equality is taken from the definition of M, given in Eq. (6.96) by

neglecting Fy. The maximal value of My is My —m, where ¢'") = 0. Therefore, we obtain

E](\g\f,maw = M0_3m
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= 1/ 9m? + 4mElab — 3m. (G47)

Now we assume that E](VTEVWH is less than Eyy e given in Eq. (G.42), with ¢y being

given in Eq. (G.31). We check this assumption as follows:

E](\?) < ENN max

N,max )

2
\VIM? +4mE;,, — 3m < gElab
2
A/ I9m? + dmE,,;, < gElab + 3m

9m2 +4dmE,, < 5 l2ab + 9m2 + 4dmE;
4
0 < SER (G.48)

The assumption that E](Q\,maw < ENNmaz 18 correct. Hence, the Eyy-range given in
Eq. (G.42) can also be used to calculate Uy(p, q) with relativistic kinematics.
From Eq. (6.110) the relativistic initial Jacobi momentum q(()r) is obtained by neglecting

E,; as

4m( By + 2
\/m( v +2m) (G.49)

Now we assume that q(()r) is larger than ¢y given in Eq. (G.31). We check if the assumption

is correct as follows:

@ > q
4m(Elab + 2m) 8
Ewp > (/=mE,
\/ 9m+4Elab fab 9m fab
(Elab —+ 2m) g

I9m + 4Elab 9
Y(Ejp +2m) > 2(9m +4E,)
0

Ep > (G50)

It is true that q(()r) > qo. Hence, the ranges of (), and @)+ to be used for calculations of

Uos(p, q) with and without relativistic kinematics are given as
1 3
50 < Qr <iq) (G.51)

2
3
0< Qv < 5‘1(())- (G.52)
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The ranges of Eyy given in Eq. (G.42) and of ), Q. given in Egs. (G.51)-(G.52)
are energy-dependent. They enlarge as Ej,, increases. In addition the ),-range is also
shifted as its minimum increases with Ej,,. Now, for practical purposes we want to have
an interpolation grid, which can be used for more than just one Ej,,. Thus, we determined
a certain range for Ej,;, we are interested in and then set the minimum of ), to correspond
to the lowest Ejg, defined as Ejgp min, and the maxima of Eyy, Qr, @ to the highest Ej,,

defined as Ejgpmaq- Finally we obtain the ranges of Eny, Qr, Qr as

2

0< ENN < gElab,max (G53)

2 3 4m(Elab maz T 2m)
=N Ea min S ™ S a . Ea max G54
\/ 5" Eab, Q 5 Om -+ 41y lab, ( )

3 4m(Elab mazx + 2’/7’1,)
0< Q. <= ’ Elapmaz- G.55
N Q — 2 9m + 4Elab,max fab ( )

Equations (G.53)-(G.55) must be taken as giving the narrowest and yet safe ranges of
Enn,Qr and @, for the interpolations. Deviations are of course allowed as long as not
lowering the range-maxima and / or raising the range-minima. But the zero-minima as
in Eqgs. (G.53) and (G.55) are exceptional. The NN T-matrix elements are known to
drop drastically as the initial or the final momenta move away from the on-shell ones,
corresponding to the NN kinetic energy. The NN kinetic energy corresponding to the
minimum of @, in Eq. (G.54) is not zero unless Ejqp in is equal to zero. Thus, one can
replace the zero-minimum of Eyy in Eq. (G.53) with a small number, much less than
the NN Kkinetic energy, which corresponds to the minimum of ). The zero-minimum of
Q. in Eq. (G.55) can also be safely replaced by a small number, since near @)+ = 0 the
deuteron S-wave is almost flat and the D-wave is approaching zero. Moreover, numerical
test shows that the minimum of @), is never really zero. We are interested to calculate the
Nd break-up amplitude for Ej,, up to 500 MeV, where data exist. Thus, we set Ejqp mas
to be 500 Mev and choose 5 MeV as Ejup min. The ranges of Exy, Qr, Q@ for this range

of Elab is

2.5-107* MeV < Exy <335 MeV (G.56)
30.66 MeV < @, <982 MeV (G.57)
0.05 MeV < Qp < 982 MeV. (G.58)



272 G Numerical Realization for the Proton-Neutron Charge Exchange Reaction



Bibliography

[1] L. D. Faddeev, Sov. Phys. JETP 12, 1014 (1961).

(2] W. Gléckle, Nucl. Phys. A141, 620 (1970).

3] A. Aaron, R. D. Amado, Y. Y. Yam, Phys. Rev. 140, B1291 (1965).

[4] Y. Yamaguchi, Phys. Rev. 95, 1628 (1954).

[5] W. Gléckle, et. al., Phys. Rep. 274, 107 (1996).

[6] M. Lacombe, et. al., Phys. Rev. C21, 861 (1980).

[7] M. M. Nagels, T. A. Rijken, J. J. de Swart, Phys. Rev. D17, 768 (1978).

8] K. Erkelenz, Phys. Rep. 13C, 191 (1974).

9] R. B. Wiringa, R. A. Smith, T. L. Ainsworth, Phys. Rev. C29, 1207 (1984).

[10] W. M. Kloet and J. A. Tjon, Nucl. Phys. A210, 380 (1973); Ann. Phys. 79, 407
(1973); C. Stolk and J. A. Tjon, Phys. Rev. Lett. 35, 985 (1975); Nucl. Phys. A319,
1 (1979).

[11] A. Arriaga, V. R. Pandharipande, R. B. Wiringa, Phys, Rev. C52, 2362 (1995).
[12] J. Carlson and R. Schiavilla, Rev. of Modern Physics 70, 743 (1998).

[13] Ch. Elster, et. al., Few-Body Systems 27, 83 (1999).

[14] W. Schadow, Ch. Elster, W. Glockle, Few-Body Systems 28, 15 (2000).

[15] B. terHaar and R. Malfliet, Phys. Rep. 149, 207 (1987).

[16] J. Holz and W. Glockle, Phys. Rev. C37 , 1386 (1988); J. Comput. Phys. 76, 131
(1988).

[17] R. A. Rice and Y. E. Kim, Few-Body Systems 14, 127 (1993).

273



274

18] D. L. Prout, et.al., Phys. Rev. C65, 034611 (2002).

[19] T. Wakasa, et.al., Phys. Rev. C59, 3177 (1999).

[20] R. B. Wiringa, V. G. J. Stoks, R. Schiavilla, Phys. Rev. C51, 38 (1995).
[21] R. Machleidt, Adv. Nucl. Phys. 19, 189 (1989).

[22] R. G. Newton, Scattering Theory of Waves and Particles (McGraw Hill, New York
1966)

[23] N. Hoshizaki, Suppl. Prog. Theor. Phys. 42, 107 (1968).
[24] J. Bystricky, F. Lehar, P. Winternitz, Le Journal de Physique 39, 1 (1978).

[25] W. Glockle, The Quantum Mechanical Few-Body Problem (Springer Verlag, Berlin,
1983)

[26] L. Wolfenstein and J. Ashkin, Phys. Rev. 85, 947 (1952); L. Wolfenstein, Phys. Rev.
96, 1654 (1954); Phys. Rev. 101, 427 (1956).

[27] 1. Fachruddin, Ch. Elster, W. Glockle, Nucl. Phys. A689, 507c (2001).

[28] K. Erkelenz, R. Alzetta, K. Holinde, Nucl. Phys. A176, 413 (1971).

[29] R. Alzetta, K. Erkelenz, K. Holinde, Nucl. Phys. A185, 459 (1972).

[30] M. Jacob and G. C. Wick, Ann. Phys. 7, 404 (1959).

[31] M. E. Rose, Elementary Theory of Angular Momentum (Wiley, New York, 1957).

[32] A. R. Edmonds, Angular Momentum in Quantum Mechanics (Princeton UP, New
Jersey, 1996).

[33] J. M. Blatt and L. C. Biedenharn, Phys. Rev. 86, 399 (1952)

[34] H. P. Stapp, T. J. Ypsilantis, N. Metropolis, Phys. Rev. 105, 302 (1957)
[35] R. Machleidt, K. Holinde, Ch. Elster, Phys. Rep. 149, 1 (1987).

[36] H. Yukawa, Proc. Phys. Math. Soc. Japan 17, 48 (1935).

[37] M. Taketani, S. Nakamura, M. Sasaki, Prog. Theor. Phys. bf 6, 581 (1951).
[38] V. G. J. Stoks, et. al., Phys. Rev. C49 , 2950 (1994).

[39] K. Hagiwara, et. al., Phys. Rev. D66, 010001 (2002).



[40]
[41]

[42]

[43]
[44]
[45]
[46]
[47]
[48]
[49]
[50]
[51]
[52]
[53]
[54]
[55]
[56]
[57]
[58]
[59]
[60]
[61]

[62]

275

R. Machleidt, F. Sammerruca, Y. Song, Phys. Rev. C53, R1483 (1996).
S. Okubo and R. E. Marshak, Ann. Phys. 4, 166 (1958).

R. Machleidt, Proceedings of the XV11th European Conference on Few-Body Prob-
lem in Physics, Evora, 2000, edited by Stadler A., et. al.

B. Wiringa, private communication.

D. Hiiber, et. al., Few-Body Systems 22, 107 (1997).

J. L. Forest, et. al., Phys. Rev. C54, 646 (1996).

W. Rarita and J. Schwinger, Phys. Rev. 59, 436 (1941).

T. Ericson and W. Weise, Pions and Nuclei, p. 49 (Claredon Press, Oxford, 1998)
R. A. Malfliet and J. A. Tjon, Nucl. Phys. A127, 161 (1969).

P. L. DeVries, A First Course in Computational Physics (Wiley, New York, 1994).
W. Glockle, Nucl. Phys. A381, 343 (1982).

R. Fong and J. Sucher, J. Math. Phys. 5, 456 (1964).

G. G. Ohlsen, Rep. Prog. Phys. 35, 717 (1972).

M. Ichimura and K. Kawahigashi, Phys. Rev. C45, 1822 (1992).

H. Witala, private communication.

J. Golak, private communication.

W. N. Polyzou and W. Glickle, Few-Body Systems 9, 97 (1990).

X. Y. Chen, et.al., Phys. Rev. C47, 2159 (1993).

H. Kamada, et.al., Phys. Rev. C66, 044010 (2002).

B. D. Keister and W. N. Polyzou, Adv. Nucl. Phys. 20, 225 (1991).

E. Epelbaum, PhD Thesis. Bochum 2000

T. Sasakawa and S. Ishikawa, Few-Body Systems 1, 3 (1986).

C. R. Chen, et. al., Phys. Rev. C33, 1740 (1986).



276

[63] A. Nogga, et. al., Phys. Lett. B409, 19 (1997).
[64] A. Nogga, H. Kamada, W. Glockle, Phys. Rev. Lett. 85, 944 (2000).
[65] A. Nogga, et. al., Phys. Rev. C65, 054003 (2002).

[66] W. H. Press, et. al., Numerical Recipes in Fortran (Cambridge University Press, New
York, 1992).

[67] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, p. 890 (Dover
Publications, Inc., New York, 1972).

[68] M. I. Haftel and F. Tabakin, Nucl. Phys. A158, 1 (1970).



Acknowledgement

First of all I gratefully thank my supervisor, Prof. Dr. Walter Glockle, for helping,
stimulating, encouraging and supporting me to accomplish my PhD work in his group at
Ruhr-Universitat Bochum, not to mention for encouraging and supporting me to partici-

pate in some international physics conferences.

I gratefully thank Prof. Dr. Charlotte Elster from Ohio University, Athens for her help,

suggestions and stimulations as well as for fruitful discussions.

[ also thank the Deutscher Akademischer Austauschdienst (DAAD) for supporting me to

come to and stay in Germany to pursue my PhD study.

I thank Prof. Dr. Witala and Dr. Jacek Golak from Uniwersytet Jagiellonski, Cracow
for discussions and providing calculations for the pd break-up process to compare with.
For the experimental data I thank Prof. Dr. J. Rapaport from Ohio University, Athens
and Prof. Dr. H. Sakai from University of Tokyo, Tokyo.

I thank to Dr. Hiroyuki Kamada, who is now a professor at Kyushu Institut of Technology,

Kyushu, for his help and for encouraging me in doing physics.

[ thank Andreas Nogga, Andreas Kriiger, Evgeny Epelbaum, Gernot Ziemer, Amel Hem-
dan and Htun Htun Oo for their help and for all nice things we have shared and experi-

enced together.

Last but not least I thank Prof. Glockle’s secretary, Mrs. Elke Hannes, for all her kind
help.

277



278



Lebenslauf

Personliche Daten

Name

Geburtsort & -datum

Adresse

Familienstand

Ausbildung

Grundschule
Erste Mittelschule
Hohere Mittelschule

Hochschulstudium

Magisterstudium

Promotion

: Imam Fachruddin

: Jakarta, 5. Dezember 1968

. Wittener Str. 141, 44803 Bochum

: verheiratet, ein Kind

(1976-1981) :
(1981-1984) :
(1984-1987) :

(1987-1992) :

(1993-1996) :

(1998-2003) :

SD Muhammadiyah II, Jakarta
SMP Negeri 5, Jakarta
SMA Negeri 1, Jakarta

Universitas Indonesia, Depok
Abschlufl : Bachelor der Physik
Bachelorarbeit : e~ — H Scattering

Universitas Indonesia, Depok
Abschlufl : Magister der Physik
Magisterarbeit : Muon’s Energy Lost in Collision

with Atom due to e"e® Pair Production

Ruhr-Universitat Bochum, Bochum

Abschlufl : Doktor der Physik

Doktorarbeit : A Three-Dimensional Momentum
Space Formulation for The NN System and

The Nd Break-Up Process

279



280
Konferenz

1. XV I™ National Symposium on Physics and Aseanip Regional Seminar on the
Physics of Metal and Alloy, 12-14 December 1996, Bandung, Indonesia

2. Indonesian Students Scientific Meeting 1997, 2 August 1997, Wiesbaden, Germany

3. 2™ Indonesian Students Scientific Meeting 1998, 4-5 September 1998, Paderborn,

Germany

4. Symposium on Current Topics in The Field of Light Nuclei, 21-25 June 1999, Cra-

cow, Poland

5. 1%¢ Asia-Pacific Conference on Few-Body Problems in Physics, 23-28 August 1999,
Noda/Kashiwa, Japan

6. XV II European Conference on Few-Body Problems in Physics, 11-16 September
2000, Evora, Portugal

7. 2" Asia-Pacific Conference on Few-Body Problems in Physics, 27-30 August 2002,
Shanghai, P. R. China

Publikation

1. L. Fachruddin and D. Kusno, Proceeding of XV I*"* National Symposium on Physics
and Aseanip Regional Seminar on the Physics of Metal and Alloy, 12-14 December
1996, Bandung, Indonesia

2. L. Fachruddin and W. Glockle, Helicity Formalism for NN Scattering without Partial
Wave Decomposition, Few-Body Systems Suppl. 12, 462 (2000)

3. L. Fachruddin, Ch. Elster and W. Glockle, Nucleon-Nucleon Scattering in a Three
Dimensional Approach, Phys. Rev. C62, 044002 (2000)

4. 1. Fachruddin, Ch. Elster and W. Glockle, Nucleon-Nucleon Scattering in a Three-
Dimensional Approach, Nucl. Phys. A689, 507¢ (2001)

5. L. Fachruddin, Ch. Elster and W. Glockle, New Forms of Deuteron Equations and
Wave Function Representations, Phys. Rev. C63, 054003 (2001)

6. I. Fachruddin, Ch. Elster and W. Glockle, The Proton-Deuteron Break-Up process
in a Three-Dimensional Approach, Mod. Phys. Lett. A18, 452 (2003)



281

7. L. Fachruddin, Ch. Elster and W. Glockle, The Nd Break-Up Process in Leading
Order in a Three-Dimensional Approach, to be published in Phys. Rev. C (accepted
in October 2003)

Bochum, 2003



