
Chapter 2
SCATTERING OF TWONUCLEONS
This hapter is not meant as a thorough presentation of sattering theory for two nuleonsor even more general for two partiles sine that is already given at many plaes suh asquantum mehanis textbooks and those speializing in sattering proesses, for exampleRef. [22℄. In fat, ompat presentations of two nuleon (2N) sattering an be foundin Refs. [23, 24, 25℄. Hene, the presentation here will be even more ompat and thishapter is meant for pratial purpose and to give a short summary of neessary formulas.In addition, de�nitions of some terminologies and quantities used in the next hapters anbe found here.2.1 Kinematis of the Two-Nuleon System in La-boratory and Center of Mass Referene FramesA proton and a neutron are ommonly alled nuleon. Though the proton mass mp =938:272 MeV di�ers from the neutron mass mn = 939:56533 MeV, this di�erene isrelatively small (� 0.14%). Therefore, the 'nuleon mass' m may be given by the averageof mp and mn.Let ki and k0i be the nuleon's momentum in the laboratory referene frame (laboratoryframe) in initial and �nal state, respetively, where i = 1; 2 indiates the ith nuleon. Theorresponding nonrelativisti energies are denoted by Ei and E 0i, respetively. Assumingnuleon 1 is the projetile and nuleon 2 is the target (k2 = 0), the momentum situationan be displayed by Fig. 2.1, where �lab is the sattering angle in the laboratory frame. The�gure also shows quantities belonging to the enter of mass referene frame (.m. frame),5
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Figure 2.1: The initial and �nal momenta, both in laboratory and .m. frames, in a 2Nsattering proess, where nuleon 1 ats as the projetile and nuleon 2 as the target(k2 = 0). The irle of radius q represents the energy onservation.i.e. the sattering angle � and the relative momentum between the two nuleons in initialand �nal states, q = 12k1 and q0 = 12(k01 � k02), respetively. It is lear that � = 2�lab.The total energy in the laboratory frame (Elab) and that in the .m. frame (Em) areElab = E1 = E 01 + E 02 (2.1)Elab = k212m = k0212m + k0222m (2.2)Em = q22� = q2m = q02m ; (2.3)where � = 12m is the redued mass of the 2N system. Em together with the energy ofmotion of the enter of mass of the two nuleons sum up to Elab and onsequently we anget the relation between Elab and EmElab = (k01 + k02)24m + Em= k214m + Em= 12Elab + Em= 2Em; (2.4)whih an also be diretly seen from the fat that k1 = 2q. Note that this relation betweenElab and Em is orret if one of the two nuleons is initially (or �nally) at rest.



2.2 Sattering Matrix and Lippmann-Shwinger Equation 72.2 Sattering Matrix and Lippmann-Shwinger Equ-ationThe essential information of a nuleon-nuleon (NN) sattering proess is ontained inthe sattering matrix. There are T-matrix, S-matrix, M-matrix and these matries arerelated to eah other as S = 1� 2�iÆ(E 0 � E)T (2.5)M = ��(2�)2T: (2.6)The delta funtion in the expression for the S-matrix indiates that the S-matrix is anon-the-energy-shell (on-shell) quantity whereas the other two sattering matries are nota�eted by this restrition and therefore have o�-shell as well as on-shell properties. Wesolve for the T-matrix in our NN sattering alulations and later use it as input for our3N alulations, where the T-matrix appears as an o�-shell quantity.The T-matrix obeys the equationT = V + V G0T; (2.7)whih is the Lippmann-Shwinger Equation (LSE) for the T-matrix. V is the matrixoperator of the NN potential, G0(z) = (z � H0)�1 is the free propagator with H0 beingthe free Hamiltonian and z a omplex number. The sattering wave is spreading outfrom the sattering enter, and for an outgoing wave the orresponding free propagatoris G+0 (E) � lim�!0G0(E + i�), where E is the energy at whih the sattering ours andthe limit an be understood as to bring z lose to the physial spetrum of H0.The T-matrix element is de�ned asT (q0; �0;q; �) � hq0; �0jT jq; �i ; (2.8)with �, �0 being the disrete quantum numbers onsidered, like spin and isospin, andjq; �i, jq0; �0i representing the initial, �nal state of the 2N system, respetively. A similarde�nition applies also to the NN potential matrix elementV (q0; �0;q; �) � hq0; �0jV jq; �i : (2.9)With the 2N states jq; �i being ompleteX� Z dq jq; �i hq; �j = 1; (2.10)



8 2 sattering of Two Nuleonsit is straightforward that the LSE for the T-matrix element, whih is the main equationin the alulations, is given byT (q0; �0;q; �) = V (q0; �0;q; �) +X�00 Z dq00V (q0; �0;q00; �00)G+0 (Eq)T (q00; �00;q; �); (2.11)with G+0 (Eq) = lim�!0 1Eq + i�� Eq00 Eq � q2m Eq00 � q002m : (2.12)2.3 Cross Setion and Spin ObservablesHere we speify the quantum number � in the 2N state jq; �i as the magneti spinquantum numbers of both nuleonsjq; �i = jq; ms1ms2i ; (2.13)with msi = �12 (i = 1, 2). Thus, there are four spin states whih onstitute a ompletebasis, in whih any spin state of the two nuleons an be given. A general pure statejq; ni an be written asjq; ni = 12Xms1;ms2=� 12 a(n)(ms1; ms2) jq; ms1ms2i : (2.14)With regard to spin the state jq; ni is a vetor of four omponents and the T-matrixelement given in Eq. (2.8) is a 4 x 4 matrix. The general spin operator for suh a state isalso a 4 x 4 matrix and may be hosen as a produt of two 2 x 2 matries�(1)� �(2)� � �(1)� 
 �(2)� ; (�; � = 0; 1; 2; 3); (2.15)with �0 and �i (i = 1,2,3) being a matrix of one and the Pauli matries, respetively:�0 = 0� 1 00 1 1A ; �1 = 0� 0 11 0 1A ; �2 = 0� 0 �ii 0 1A ; �3 = 0� 1 00 �1 1A ; (2.16)and the upper indies 1, 2 denoting the nuleon on the state of whih the �� operatorworks.In experiments we deal not only with two nuleons but many more in the beam andthe target. Therefore, the state is a mixed state of pure 2N states as given in of Eq. (2.14),and the expetation value of an observable hOi is alulated by mean of a density matrix� � �Xn jni pn hnj ; (2.17)



2.3 Cross Setion and Spin Observables 9where pn is the normalized probability of the nth pure spin state aording to Eq. (2.14)jni � 12Xms1;ms2=� 12 a(n)(ms1; ms2) jms1ms2i : (2.18)For instane, in the �nal state: hOi = Tr f�fOgTr f�fg ; (2.19)with �f = �nal density matrix= M�iM y (2.20)�i = initial density matrix.Using Eq. (2.19) one derives the expression for the expetation value of a general spinobservable D�(1)� �(2)� Ef in the �nal state in relation to the values D�(1)� �(2)� Ei in the initialstate I D�(1)� �(2)� Ef = 14X�;� D�(1)� �(2)� Ei Tr nM�(1)� �(2)� M y�(1)� �(2)� o ; (2.21)where I is the di�erential ross setion summed over all possible �nal spin statesI =Xj d�jd
 = Tr f�fgTr f�ig = 14X�;� D�(1)� �(2)� Ei Tr nM�(1)� �(2)� M yo (2.22)(in the last equality Eq. (2.21) is applied again).The simplest ase is if the beam and target are unpolarized and no spin measurementsin the �nal state are made. In this ase one measures the spin averaged di�erential rosssetion I0 = 14Tr nMM yo : (2.23)The spin projetions on a ertain axis must be spei�ed and therefore unit vetors areneeded. Sine there are two referene frames - laboratory and .m. frames - two sets ofunit vetors are de�ned, one set for eah frame. But as an be heked in Ref. [25℄ for the2N system the two sets are the same:unit vetors for the initial state : 8<: .m. frame : q̂; N̂; N̂� q̂laboratory frame : l̂; n̂; ŝ (2.24)unit vetors for the �nal state : 8<: .m. frame : P̂; N̂; K̂laboratory frame : l̂0; n̂0; ŝ0 (2.25)



10 2 sattering of Two Nuleonswith n̂ = n̂0 � k̂1 � k̂01jk̂1 � k̂01j = N̂ � q� q0jq� q0j (2.26)l̂ � k̂1 = q̂ (2.27)ŝ � n̂� l̂ = N̂� q̂ (2.28)l̂0 � k̂01 = P̂ � q+ q0jq+ q0j (2.29)ŝ0 � n̂0 � l̂0 = K̂ � q0 � qjq0 � qj : (2.30)In onnetion with a Cartesian oordinate system the beam's momentum k1 is set typiallyto point along the positive z-axis and the sattered nuleon's momentum k01 is in thexz-plane. Thus, the sattering takes plaes in the xz-plane and the unit vetors arel̂ = 0BBB� 001 1CCCA ; ŝ = 0BBB� 100 1CCCA ; n̂ = n̂0 = 0BBB� 010 1CCCA ; (2.31)l̂0 = 0BBB� sin �lab0os �lab 1CCCA ; ŝ0 = 0BBB� os �lab0� sin �lab 1CCCA :Aording to Eq. (2.21) there seems to be 16 x 16 = 256 possible initial-to-�nalspin transitions in a NN sattering proess. Rotational, parity, time-reversal and isospininvarianes (the last one together with parity invariane lead to spin invariane), however,forbid many transitions and moreover ause some permitted transitions to be related toeah other. Under these invarianes the sattering matrixM an be expressed in terms ofa few parameters alled Wolfenstein parameters [26, 23℄ (a; ;m; g; h), whih depend onthe magnitudes q0 of �nal and q of initial relative momenta as well as the angle betweenthe two momenta q0 and qM = a+ (�(1) + �(2)) � N̂+m(�(1) � N̂)(�(2) � N̂)+(g + h)(�(1) � P̂)(�(2) � P̂) + (g � h)(�(1) � K̂)(�(2) � K̂) (2.32)a = 14TrfMg (2.33) = 18TrfM�(1)y +M�(2)y g (2.34)m = 14TrfM�(1)y �(2)y g (2.35)



2.3 Cross Setion and Spin Observables 11g = 18TrfM�(1)x �(2)x +M�(1)z �(2)z g (2.36)h = 18Trf[�M�(1)x �(2)x +M�(1)z �(2)z ℄ os � + [M�(1)x �(2)z +M�(1)z �(2)x ℄ sin �g (2.37)Note that these expressions for the Wolfenstein parameters are for the hosen xz-satteringframe, see Eq. (2.31). The NN sattering observables an be alulated using M diretlyor the Wolfenstein parameters.Finally, we lose this hapter by showing briey seven typial types of experimentsand the orresponding spin observables. Comprehensive desriptions of these experimentsan be found in Ref. [23℄. The experiments are denoted by the reations as1: N2(N1; N1)N2 2: N2(N1; ~N1)N2 3: N2( ~N1; N1)N2 4: N2( ~N1; ~N1)N25: N2( ~N1; N1) ~N2 6: N2(N1; ~N1) ~N2 7: ~N2( ~N1; N1)N2;where N1 and N2 stand for nuleon 1 (the projetile) and nuleon 2 (the target),respetively, the little arrows over N1 or N2 mean that the orresponding nuleon ispolarized or that the polarization of that nuleon is measured. Let us take for examplethe �fth experiment: N2( ~N1; N1) ~N2. This reation means that a polarized projetile( ~N1) is direted to an unpolarized target (N2) and �nally the polarization of the re-oil nuleon ( ~N2) is measured. The polarization of the sattered nuleon (N1) is notmeasured. Note that proesses 4 and 5 are only distinguishable for a np system.In the �rst experiment the beam and target are unpolarized and no spin measurementon the outgoing nuleons are made. One measures only the spin averaged ross setionI0 = 14Tr nMM yo= jaj2 + jmj2 + 2jj2 + 2jgj2 + 2jhj2: (2.38)In the seond experiment the beam and target are unpolarized. The polarizationof the sattered nuleon is of interest and therefore after the proess one measures thespin diretion of this nuleon. Aording to the general formula for spin observables(Eq. (2.21)) the polarization P0 = D�(1)E = D�(1)�(2)0 E of the sattered nuleon isP0 = 14I0Tr nMM y�(1)o= n̂ 14I0Tr nMM y�(1)n o= n̂2Ref(a +m)�gI0 ; (2.39)where I0 is the spin averaged ross setion given in Eq. (2.38). Parity invariane a�etsthe proess suh that the polarization must be normal to the sattering plane.



12 2 sattering of Two NuleonsThe third experiment is to measure the asymmetry ALR de�ned asALR � IL � IRIL + IR ; (2.40)where IL = I(�; �) and IR = I(�; � + �) are the left-sattering and right-sattering rosssetions, respetively. A polarized beam is direted to an unpolarized target. Due toparity invariane a ontribution to the ross setion arises only if the polarization isnormal to the sattering plane. The ross setion isI = 14 3X�=0 D�(1)� Ei Tr nM�(1)� M yo= I0 + 14Pi � n̂Tr nM(�(1) � n̂)M yo (2.41)and the left- and right-sattering ross setions areIL = I0 + 14Pi � n̂Tr nM(�(1) � n̂)M yo (2.42)IR = I0 � 14Pi � n̂Tr nM(�(1) � n̂)M yo : (2.43)Therefore, ALR = Pi � n̂Tr nM(�(1) � n̂)M yo4I0= Pi � n̂An; (2.44)with An = 14I0Tr nM(�(1) � n̂)M yo= 2Ref(a+m)�gI0= P0: (2.45)This quantity An alled analyzing power is often denoted by Ay, sine n̂ = ŷ for thetypial sattering frame given in Eq. (2.31).In experiment 4 one starts with a polarized beam and an unpolarized target and �nallymeasures the polarization of the sattered nuleon, Pf = D�(1)EIPf = 14 3X�=0 D�(1)� Ei Tr nM�(1)� M y�(1)o= I0P0 + 14Pi � Tr nM�(1)M y�(1)o= I0 nn̂ [P0 +D(Pi � n̂)℄ + l̂0 hA0(Pi � l̂) +R0(Pi � ŝ)i+ ŝ0 hA(Pi � l̂) +R(Pi � ŝ)io : (2.46)



2.3 Cross Setion and Spin Observables 13Here we meet other spin observables, summarized in the depolarization tensor Dij, whihis de�ned as I0Dij � 14Tr nM(�(1) � ĵ)M y(�(1) � î)o ; (2.47)and the observables D;R;R0; A; A0 appearing in the polarization ~Pf areI0D � I0Dnn = 14Tr nM(�(1) � n̂)M y(�(1) � n̂)o= jaj2 + jmj2 + 2jj2 � 2jgj2 � 2jhj2 (2.48)I0R � I0Ds0s = 14Tr nM(�(1) � ŝ)M y(�(1) � ŝ0)o= (jaj2 � jmj2 � 4Refgh�g) os �2 � 2Imf(a�m)�g sin �2 (2.49)I0R0 � I0Dl0s = 14Tr nM(�(1) � ŝ)M y(�(1) � l̂0)o= (jaj2 � jmj2 + 4Refgh�g) sin �2 + 2Imf(a�m)�g os �2 (2.50)I0A � I0Ds0l = 14Tr nM(�(1) � l̂)M y(�(1) � ŝ0)o= �(jaj2 � jmj2 � 4Refgh�g) sin �2 � 2Imf(a�m)�g os �2 (2.51)I0A0 � I0Dl0l = 14Tr nM(�(1) � l̂)M y(�(1) � l̂0)o= (jaj2 � jmj2 + 4Refgh�g) os �2 � 2Imf(a�m)�g sin �2 : (2.52)Experiment 5 is similar to experiment 4 and an be distinguished only in a np system.One starts with a polarized beam and an unpolarized target but �nally one measures thepolarization of the reoil nuleon Pf = D�(2)EIPf = 14 3X�=0 D�(1)� Ei Tr nM�(1)� M y�(2)o= I0P0 + 14Pi � Tr nM�(1)M y�(2)o= I0 nn̂ [P0 +Dt(Pi � n̂)℄ + l̂0 hAt(Pi � l̂) +Rt(Pi � ŝ)i+ ŝ0 hA0t(Pi � l̂) +R0t(Pi � ŝ)io (2.53)P0 = 14I0Tr nMM y(�(2) � n̂)o = 2Ref(a+m)�gI0 : (2.54)Here we have again new spin observables, summarized in the polarization-transfer tensorKij, whih is de�ned as I0Kij � 14Tr nM(�(1) � ĵ)M y(�(2) � î)o ; (2.55)



14 2 sattering of Two Nuleonsand the observables Dt; Rt; R0t; At; A0t appearing in the polarization Pf areI0Dt � I0Knn = 14Tr nM(�(1) � n̂)M y(�(2) � n̂)o= 2(Refam�g+ jj2 + jgj2 � jhj2) (2.56)I0Rt � I0Kl0s = 14Tr nM(�(1) � ŝ)M y(�(2) � l̂0)o= 2Ref(a+m)g� + (a�m)h�g sin �2 + 4Imfg�g os �2 (2.57)I0R0t � I0Ks0s = 14Tr nM(�(1) � ŝ)M y(�(2) � ŝ0)o= 2Ref(a+m)g� � (a�m)h�g os �2 � 4Imfg�g sin �2 (2.58)I0At � �I0Kl0l = �14Tr nM(�(1) � l̂)M y(�(2) � l̂0)o= �2Ref(a +m)g� + (a�m)h�g os �2 + 4Imfg�g sin �2 (2.59)I0A0t � �I0Ks0l = �14Tr nM(�(1) � l̂)M y(�(2) � ŝ0)o= 2Ref(a+m)g� � (a�m)h�g sin �2 + 4Imfg�g os �2 : (2.60)Note the minus sign in the de�nitions for At and A0t. These are the de�nitions given in Cen-ter for Nulear Studies Data Analysis Center (CNS DAC, http://gwda.phys.gwu.edu/).We take these de�nitions sine later we ompare with experimental data from this site. InRef. [23℄ the de�nitions for At and A0t have the opposite sign. In ase of idential partilesthese expressions are the same as the ones given in Eqs. (2.48)-(2.52) if one replaes � by� � � (see for instane [23℄).In experiment 6 the beam and target are unpolarized. In the �nal state the spins ofthe two outgoing nuleons are simultaneously measuredI D�(1)�(2)Ef = 14Tr nMM y�(1)�(2)o= I0 �CNNN̂N̂+ CPP P̂P̂+ CKKK̂K̂+ CKP (P̂K̂+ K̂P̂)� : (2.61)Cij is alled the spin orrelation parameter and is de�ned asI0Cij � 14Tr nMM y(�(1) � î)(�(2) � ĵ)o : (2.62)Aordingly, CNN ; CPP ; CKK; CKP areI0CNN = 14Tr nMM y(�(1) � N̂)(�(2) � N̂)o = 2(Refam�g+ jj2 � jgj2 + jhj2) (2.63)I0CPP = 14Tr nMM y(�(1) � P̂)(�(2) � P̂)o = 2Ref(a�m)g� + (a +m)h�g (2.64)I0CKK = 14Tr nMM y(�(1) � K̂)(�(2) � K̂)o = 2Ref(a�m)g� � (a +m)h�g (2.65)I0CKP = 14Tr nMM y(�(1) � K̂)(�(2) � P̂)o = �4Imfh�g: (2.66)



2.3 Cross Setion and Spin Observables 15It an be shown that CPK = CKP .In the last experiment both the beam and target are polarized and no spin measure-ments are made in the �nal state. One measures the ross setionI = 14X�;� D�(1)� �(2)� Ei Tr nM�(1)� �(2)� M yo= I0 (1 + 2PiyAy + PixxAxx + PiyyAyy + PizzAzz � 2PixzAzx) : (2.67)The indies are for the sattering frame given in Eq. (2.31). Piy = D�(1)y Ei = D�(2)y Ei andPikl = D�(1)k �(2)l Ei are the polarization and tensor polarization in initial state, respetively.Ay is the already shown analyzing power. The other observables are the spin orrelationparameters Aij's, whih are also alled tensor analyzing powers de�ned asAij � 14I0Tr nM(�(1) � î)(�(2) � ĵ)M yo : (2.68)Aordingly, Axx; Ayy; Azz; Azx areI0Axx � I0Ass = 14Tr nM(�(1) � ŝ)(�(2) � ŝ)M yo= 2Ref(a�m)g� � (a+m)h� os �g+ 4Imfh�g sin � (2.69)I0Ayy � I0Ann = 14Tr nM(�(1) � n̂)(�(2) � n̂)M yo= 2(Refam�g+ jj2 � jgj2 + jhj2) = I0CNN (2.70)I0Azz � I0All = 14Tr nM(�(1) � l̂)(�(2) � l̂)M yo= 2Ref(a�m)g� + (a +m)h� os �g � 4Imfh�g sin � (2.71)I0Azx � �I0Als = �14Tr nM(�(1) � l̂)(�(2) � ŝ)M yo= �2Ref(a +m)h�g sin � � 4Imfh�g os � (2.72)It an be shown that Azx = Axz. Again, note the minus sign in the de�nition for Azx,whih is taken from CNS DAC. In Ref. [23℄ the de�nition for Azx has the opposite sign.


