
Chapter 2
SCATTERING OF TWONUCLEONS
This 
hapter is not meant as a thorough presentation of s
attering theory for two nu
leonsor even more general for two parti
les sin
e that is already given at many pla
es su
h asquantum me
hani
s textbooks and those spe
ializing in s
attering pro
esses, for exampleRef. [22℄. In fa
t, 
ompa
t presentations of two nu
leon (2N) s
attering 
an be foundin Refs. [23, 24, 25℄. Hen
e, the presentation here will be even more 
ompa
t and this
hapter is meant for pra
ti
al purpose and to give a short summary of ne
essary formulas.In addition, de�nitions of some terminologies and quantities used in the next 
hapters 
anbe found here.2.1 Kinemati
s of the Two-Nu
leon System in La-boratory and Center of Mass Referen
e FramesA proton and a neutron are 
ommonly 
alled nu
leon. Though the proton mass mp =938:272 MeV di�ers from the neutron mass mn = 939:56533 MeV, this di�eren
e isrelatively small (� 0.14%). Therefore, the 'nu
leon mass' m may be given by the averageof mp and mn.Let ki and k0i be the nu
leon's momentum in the laboratory referen
e frame (laboratoryframe) in initial and �nal state, respe
tively, where i = 1; 2 indi
ates the ith nu
leon. The
orresponding nonrelativisti
 energies are denoted by Ei and E 0i, respe
tively. Assumingnu
leon 1 is the proje
tile and nu
leon 2 is the target (k2 = 0), the momentum situation
an be displayed by Fig. 2.1, where �lab is the s
attering angle in the laboratory frame. The�gure also shows quantities belonging to the 
enter of mass referen
e frame (
.m. frame),5
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Figure 2.1: The initial and �nal momenta, both in laboratory and 
.m. frames, in a 2Ns
attering pro
ess, where nu
leon 1 a
ts as the proje
tile and nu
leon 2 as the target(k2 = 0). The 
ir
le of radius q represents the energy 
onservation.i.e. the s
attering angle � and the relative momentum between the two nu
leons in initialand �nal states, q = 12k1 and q0 = 12(k01 � k02), respe
tively. It is 
lear that � = 2�lab.The total energy in the laboratory frame (Elab) and that in the 
.m. frame (E
m) areElab = E1 = E 01 + E 02 (2.1)Elab = k212m = k0212m + k0222m (2.2)E
m = q22� = q2m = q02m ; (2.3)where � = 12m is the redu
ed mass of the 2N system. E
m together with the energy ofmotion of the 
enter of mass of the two nu
leons sum up to Elab and 
onsequently we 
anget the relation between Elab and E
mElab = (k01 + k02)24m + E
m= k214m + E
m= 12Elab + E
m= 2E
m; (2.4)whi
h 
an also be dire
tly seen from the fa
t that k1 = 2q. Note that this relation betweenElab and E
m is 
orre
t if one of the two nu
leons is initially (or �nally) at rest.



2.2 S
attering Matrix and Lippmann-S
hwinger Equation 72.2 S
attering Matrix and Lippmann-S
hwinger Equ-ationThe essential information of a nu
leon-nu
leon (NN) s
attering pro
ess is 
ontained inthe s
attering matrix. There are T-matrix, S-matrix, M-matrix and these matri
es arerelated to ea
h other as S = 1� 2�iÆ(E 0 � E)T (2.5)M = ��(2�)2T: (2.6)The delta fun
tion in the expression for the S-matrix indi
ates that the S-matrix is anon-the-energy-shell (on-shell) quantity whereas the other two s
attering matri
es are nota�e
ted by this restri
tion and therefore have o�-shell as well as on-shell properties. Wesolve for the T-matrix in our NN s
attering 
al
ulations and later use it as input for our3N 
al
ulations, where the T-matrix appears as an o�-shell quantity.The T-matrix obeys the equationT = V + V G0T; (2.7)whi
h is the Lippmann-S
hwinger Equation (LSE) for the T-matrix. V is the matrixoperator of the NN potential, G0(z) = (z � H0)�1 is the free propagator with H0 beingthe free Hamiltonian and z a 
omplex number. The s
attering wave is spreading outfrom the s
attering 
enter, and for an outgoing wave the 
orresponding free propagatoris G+0 (E) � lim�!0G0(E + i�), where E is the energy at whi
h the s
attering o

urs andthe limit 
an be understood as to bring z 
lose to the physi
al spe
trum of H0.The T-matrix element is de�ned asT (q0; �0;q; �) � hq0; �0jT jq; �i ; (2.8)with �, �0 being the dis
rete quantum numbers 
onsidered, like spin and isospin, andjq; �i, jq0; �0i representing the initial, �nal state of the 2N system, respe
tively. A similarde�nition applies also to the NN potential matrix elementV (q0; �0;q; �) � hq0; �0jV jq; �i : (2.9)With the 2N states jq; �i being 
ompleteX� Z dq jq; �i hq; �j = 1; (2.10)



8 2 s
attering of Two Nu
leonsit is straightforward that the LSE for the T-matrix element, whi
h is the main equationin the 
al
ulations, is given byT (q0; �0;q; �) = V (q0; �0;q; �) +X�00 Z dq00V (q0; �0;q00; �00)G+0 (Eq)T (q00; �00;q; �); (2.11)with G+0 (Eq) = lim�!0 1Eq + i�� Eq00 Eq � q2m Eq00 � q002m : (2.12)2.3 Cross Se
tion and Spin ObservablesHere we spe
ify the quantum number � in the 2N state jq; �i as the magneti
 spinquantum numbers of both nu
leonsjq; �i = jq; ms1ms2i ; (2.13)with msi = �12 (i = 1, 2). Thus, there are four spin states whi
h 
onstitute a 
ompletebasis, in whi
h any spin state of the two nu
leons 
an be given. A general pure statejq; ni 
an be written asjq; ni = 12Xms1;ms2=� 12 a(n)(ms1; ms2) jq; ms1ms2i : (2.14)With regard to spin the state jq; ni is a ve
tor of four 
omponents and the T-matrixelement given in Eq. (2.8) is a 4 x 4 matrix. The general spin operator for su
h a state isalso a 4 x 4 matrix and may be 
hosen as a produ
t of two 2 x 2 matri
es�(1)� �(2)� � �(1)� 
 �(2)� ; (�; � = 0; 1; 2; 3); (2.15)with �0 and �i (i = 1,2,3) being a matrix of one and the Pauli matri
es, respe
tively:�0 = 0� 1 00 1 1A ; �1 = 0� 0 11 0 1A ; �2 = 0� 0 �ii 0 1A ; �3 = 0� 1 00 �1 1A ; (2.16)and the upper indi
es 1, 2 denoting the nu
leon on the state of whi
h the �� operatorworks.In experiments we deal not only with two nu
leons but many more in the beam andthe target. Therefore, the state is a mixed state of pure 2N states as given in of Eq. (2.14),and the expe
tation value of an observable hOi is 
al
ulated by mean of a density matrix� � �Xn jni pn hnj ; (2.17)



2.3 Cross Se
tion and Spin Observables 9where pn is the normalized probability of the nth pure spin state a

ording to Eq. (2.14)jni � 12Xms1;ms2=� 12 a(n)(ms1; ms2) jms1ms2i : (2.18)For instan
e, in the �nal state: hOi = Tr f�fOgTr f�fg ; (2.19)with �f = �nal density matrix= M�iM y (2.20)�i = initial density matrix.Using Eq. (2.19) one derives the expression for the expe
tation value of a general spinobservable D�(1)� �(2)� Ef in the �nal state in relation to the values D�(1)� �(2)� Ei in the initialstate I D�(1)� �(2)� Ef = 14X�;� D�(1)� �(2)� Ei Tr nM�(1)� �(2)� M y�(1)� �(2)� o ; (2.21)where I is the di�erential 
ross se
tion summed over all possible �nal spin statesI =Xj d�jd
 = Tr f�fgTr f�ig = 14X�;� D�(1)� �(2)� Ei Tr nM�(1)� �(2)� M yo (2.22)(in the last equality Eq. (2.21) is applied again).The simplest 
ase is if the beam and target are unpolarized and no spin measurementsin the �nal state are made. In this 
ase one measures the spin averaged di�erential 
rossse
tion I0 = 14Tr nMM yo : (2.23)The spin proje
tions on a 
ertain axis must be spe
i�ed and therefore unit ve
tors areneeded. Sin
e there are two referen
e frames - laboratory and 
.m. frames - two sets ofunit ve
tors are de�ned, one set for ea
h frame. But as 
an be 
he
ked in Ref. [25℄ for the2N system the two sets are the same:unit ve
tors for the initial state : 8<: 
.m. frame : q̂; N̂; N̂� q̂laboratory frame : l̂; n̂; ŝ (2.24)unit ve
tors for the �nal state : 8<: 
.m. frame : P̂; N̂; K̂laboratory frame : l̂0; n̂0; ŝ0 (2.25)



10 2 s
attering of Two Nu
leonswith n̂ = n̂0 � k̂1 � k̂01jk̂1 � k̂01j = N̂ � q� q0jq� q0j (2.26)l̂ � k̂1 = q̂ (2.27)ŝ � n̂� l̂ = N̂� q̂ (2.28)l̂0 � k̂01 = P̂ � q+ q0jq+ q0j (2.29)ŝ0 � n̂0 � l̂0 = K̂ � q0 � qjq0 � qj : (2.30)In 
onne
tion with a Cartesian 
oordinate system the beam's momentum k1 is set typi
allyto point along the positive z-axis and the s
attered nu
leon's momentum k01 is in thexz-plane. Thus, the s
attering takes pla
es in the xz-plane and the unit ve
tors arel̂ = 0BBB� 001 1CCCA ; ŝ = 0BBB� 100 1CCCA ; n̂ = n̂0 = 0BBB� 010 1CCCA ; (2.31)l̂0 = 0BBB� sin �lab0
os �lab 1CCCA ; ŝ0 = 0BBB� 
os �lab0� sin �lab 1CCCA :A

ording to Eq. (2.21) there seems to be 16 x 16 = 256 possible initial-to-�nalspin transitions in a NN s
attering pro
ess. Rotational, parity, time-reversal and isospininvarian
es (the last one together with parity invarian
e lead to spin invarian
e), however,forbid many transitions and moreover 
ause some permitted transitions to be related toea
h other. Under these invarian
es the s
attering matrixM 
an be expressed in terms ofa few parameters 
alled Wolfenstein parameters [26, 23℄ (a; 
;m; g; h), whi
h depend onthe magnitudes q0 of �nal and q of initial relative momenta as well as the angle betweenthe two momenta q0 and qM = a+ 
(�(1) + �(2)) � N̂+m(�(1) � N̂)(�(2) � N̂)+(g + h)(�(1) � P̂)(�(2) � P̂) + (g � h)(�(1) � K̂)(�(2) � K̂) (2.32)a = 14TrfMg (2.33)
 = 18TrfM�(1)y +M�(2)y g (2.34)m = 14TrfM�(1)y �(2)y g (2.35)



2.3 Cross Se
tion and Spin Observables 11g = 18TrfM�(1)x �(2)x +M�(1)z �(2)z g (2.36)h = 18Trf[�M�(1)x �(2)x +M�(1)z �(2)z ℄ 
os � + [M�(1)x �(2)z +M�(1)z �(2)x ℄ sin �g (2.37)Note that these expressions for the Wolfenstein parameters are for the 
hosen xz-s
atteringframe, see Eq. (2.31). The NN s
attering observables 
an be 
al
ulated using M dire
tlyor the Wolfenstein parameters.Finally, we 
lose this 
hapter by showing brie
y seven typi
al types of experimentsand the 
orresponding spin observables. Comprehensive des
riptions of these experiments
an be found in Ref. [23℄. The experiments are denoted by the rea
tions as1: N2(N1; N1)N2 2: N2(N1; ~N1)N2 3: N2( ~N1; N1)N2 4: N2( ~N1; ~N1)N25: N2( ~N1; N1) ~N2 6: N2(N1; ~N1) ~N2 7: ~N2( ~N1; N1)N2;where N1 and N2 stand for nu
leon 1 (the proje
tile) and nu
leon 2 (the target),respe
tively, the little arrows over N1 or N2 mean that the 
orresponding nu
leon ispolarized or that the polarization of that nu
leon is measured. Let us take for examplethe �fth experiment: N2( ~N1; N1) ~N2. This rea
tion means that a polarized proje
tile( ~N1) is dire
ted to an unpolarized target (N2) and �nally the polarization of the re-
oil nu
leon ( ~N2) is measured. The polarization of the s
attered nu
leon (N1) is notmeasured. Note that pro
esses 4 and 5 are only distinguishable for a np system.In the �rst experiment the beam and target are unpolarized and no spin measurementon the outgoing nu
leons are made. One measures only the spin averaged 
ross se
tionI0 = 14Tr nMM yo= jaj2 + jmj2 + 2j
j2 + 2jgj2 + 2jhj2: (2.38)In the se
ond experiment the beam and target are unpolarized. The polarizationof the s
attered nu
leon is of interest and therefore after the pro
ess one measures thespin dire
tion of this nu
leon. A

ording to the general formula for spin observables(Eq. (2.21)) the polarization P0 = D�(1)E = D�(1)�(2)0 E of the s
attered nu
leon isP0 = 14I0Tr nMM y�(1)o= n̂ 14I0Tr nMM y�(1)n o= n̂2Ref(a +m)
�gI0 ; (2.39)where I0 is the spin averaged 
ross se
tion given in Eq. (2.38). Parity invarian
e a�e
tsthe pro
ess su
h that the polarization must be normal to the s
attering plane.



12 2 s
attering of Two Nu
leonsThe third experiment is to measure the asymmetry ALR de�ned asALR � IL � IRIL + IR ; (2.40)where IL = I(�; �) and IR = I(�; � + �) are the left-s
attering and right-s
attering 
rossse
tions, respe
tively. A polarized beam is dire
ted to an unpolarized target. Due toparity invarian
e a 
ontribution to the 
ross se
tion arises only if the polarization isnormal to the s
attering plane. The 
ross se
tion isI = 14 3X�=0 D�(1)� Ei Tr nM�(1)� M yo= I0 + 14Pi � n̂Tr nM(�(1) � n̂)M yo (2.41)and the left- and right-s
attering 
ross se
tions areIL = I0 + 14Pi � n̂Tr nM(�(1) � n̂)M yo (2.42)IR = I0 � 14Pi � n̂Tr nM(�(1) � n̂)M yo : (2.43)Therefore, ALR = Pi � n̂Tr nM(�(1) � n̂)M yo4I0= Pi � n̂An; (2.44)with An = 14I0Tr nM(�(1) � n̂)M yo= 2Ref(a+m)
�gI0= P0: (2.45)This quantity An 
alled analyzing power is often denoted by Ay, sin
e n̂ = ŷ for thetypi
al s
attering frame given in Eq. (2.31).In experiment 4 one starts with a polarized beam and an unpolarized target and �nallymeasures the polarization of the s
attered nu
leon, Pf = D�(1)EIPf = 14 3X�=0 D�(1)� Ei Tr nM�(1)� M y�(1)o= I0P0 + 14Pi � Tr nM�(1)M y�(1)o= I0 nn̂ [P0 +D(Pi � n̂)℄ + l̂0 hA0(Pi � l̂) +R0(Pi � ŝ)i+ ŝ0 hA(Pi � l̂) +R(Pi � ŝ)io : (2.46)



2.3 Cross Se
tion and Spin Observables 13Here we meet other spin observables, summarized in the depolarization tensor Dij, whi
his de�ned as I0Dij � 14Tr nM(�(1) � ĵ)M y(�(1) � î)o ; (2.47)and the observables D;R;R0; A; A0 appearing in the polarization ~Pf areI0D � I0Dnn = 14Tr nM(�(1) � n̂)M y(�(1) � n̂)o= jaj2 + jmj2 + 2j
j2 � 2jgj2 � 2jhj2 (2.48)I0R � I0Ds0s = 14Tr nM(�(1) � ŝ)M y(�(1) � ŝ0)o= (jaj2 � jmj2 � 4Refgh�g) 
os �2 � 2Imf(a�m)�
g sin �2 (2.49)I0R0 � I0Dl0s = 14Tr nM(�(1) � ŝ)M y(�(1) � l̂0)o= (jaj2 � jmj2 + 4Refgh�g) sin �2 + 2Imf(a�m)�
g 
os �2 (2.50)I0A � I0Ds0l = 14Tr nM(�(1) � l̂)M y(�(1) � ŝ0)o= �(jaj2 � jmj2 � 4Refgh�g) sin �2 � 2Imf(a�m)�
g 
os �2 (2.51)I0A0 � I0Dl0l = 14Tr nM(�(1) � l̂)M y(�(1) � l̂0)o= (jaj2 � jmj2 + 4Refgh�g) 
os �2 � 2Imf(a�m)�
g sin �2 : (2.52)Experiment 5 is similar to experiment 4 and 
an be distinguished only in a np system.One starts with a polarized beam and an unpolarized target but �nally one measures thepolarization of the re
oil nu
leon Pf = D�(2)EIPf = 14 3X�=0 D�(1)� Ei Tr nM�(1)� M y�(2)o= I0P0 + 14Pi � Tr nM�(1)M y�(2)o= I0 nn̂ [P0 +Dt(Pi � n̂)℄ + l̂0 hAt(Pi � l̂) +Rt(Pi � ŝ)i+ ŝ0 hA0t(Pi � l̂) +R0t(Pi � ŝ)io (2.53)P0 = 14I0Tr nMM y(�(2) � n̂)o = 2Ref(a+m)
�gI0 : (2.54)Here we have again new spin observables, summarized in the polarization-transfer tensorKij, whi
h is de�ned as I0Kij � 14Tr nM(�(1) � ĵ)M y(�(2) � î)o ; (2.55)



14 2 s
attering of Two Nu
leonsand the observables Dt; Rt; R0t; At; A0t appearing in the polarization Pf areI0Dt � I0Knn = 14Tr nM(�(1) � n̂)M y(�(2) � n̂)o= 2(Refam�g+ j
j2 + jgj2 � jhj2) (2.56)I0Rt � I0Kl0s = 14Tr nM(�(1) � ŝ)M y(�(2) � l̂0)o= 2Ref(a+m)g� + (a�m)h�g sin �2 + 4Imf
g�g 
os �2 (2.57)I0R0t � I0Ks0s = 14Tr nM(�(1) � ŝ)M y(�(2) � ŝ0)o= 2Ref(a+m)g� � (a�m)h�g 
os �2 � 4Imf
g�g sin �2 (2.58)I0At � �I0Kl0l = �14Tr nM(�(1) � l̂)M y(�(2) � l̂0)o= �2Ref(a +m)g� + (a�m)h�g 
os �2 + 4Imf
g�g sin �2 (2.59)I0A0t � �I0Ks0l = �14Tr nM(�(1) � l̂)M y(�(2) � ŝ0)o= 2Ref(a+m)g� � (a�m)h�g sin �2 + 4Imf
g�g 
os �2 : (2.60)Note the minus sign in the de�nitions for At and A0t. These are the de�nitions given in Cen-ter for Nu
lear Studies Data Analysis Center (CNS DAC, http://gwda
.phys.gwu.edu/).We take these de�nitions sin
e later we 
ompare with experimental data from this site. InRef. [23℄ the de�nitions for At and A0t have the opposite sign. In 
ase of identi
al parti
lesthese expressions are the same as the ones given in Eqs. (2.48)-(2.52) if one repla
es � by� � � (see for instan
e [23℄).In experiment 6 the beam and target are unpolarized. In the �nal state the spins ofthe two outgoing nu
leons are simultaneously measuredI D�(1)�(2)Ef = 14Tr nMM y�(1)�(2)o= I0 �CNNN̂N̂+ CPP P̂P̂+ CKKK̂K̂+ CKP (P̂K̂+ K̂P̂)� : (2.61)Cij is 
alled the spin 
orrelation parameter and is de�ned asI0Cij � 14Tr nMM y(�(1) � î)(�(2) � ĵ)o : (2.62)A

ordingly, CNN ; CPP ; CKK; CKP areI0CNN = 14Tr nMM y(�(1) � N̂)(�(2) � N̂)o = 2(Refam�g+ j
j2 � jgj2 + jhj2) (2.63)I0CPP = 14Tr nMM y(�(1) � P̂)(�(2) � P̂)o = 2Ref(a�m)g� + (a +m)h�g (2.64)I0CKK = 14Tr nMM y(�(1) � K̂)(�(2) � K̂)o = 2Ref(a�m)g� � (a +m)h�g (2.65)I0CKP = 14Tr nMM y(�(1) � K̂)(�(2) � P̂)o = �4Imf
h�g: (2.66)



2.3 Cross Se
tion and Spin Observables 15It 
an be shown that CPK = CKP .In the last experiment both the beam and target are polarized and no spin measure-ments are made in the �nal state. One measures the 
ross se
tionI = 14X�;� D�(1)� �(2)� Ei Tr nM�(1)� �(2)� M yo= I0 (1 + 2PiyAy + PixxAxx + PiyyAyy + PizzAzz � 2PixzAzx) : (2.67)The indi
es are for the s
attering frame given in Eq. (2.31). Piy = D�(1)y Ei = D�(2)y Ei andPikl = D�(1)k �(2)l Ei are the polarization and tensor polarization in initial state, respe
tively.Ay is the already shown analyzing power. The other observables are the spin 
orrelationparameters Aij's, whi
h are also 
alled tensor analyzing powers de�ned asAij � 14I0Tr nM(�(1) � î)(�(2) � ĵ)M yo : (2.68)A

ordingly, Axx; Ayy; Azz; Azx areI0Axx � I0Ass = 14Tr nM(�(1) � ŝ)(�(2) � ŝ)M yo= 2Ref(a�m)g� � (a+m)h� 
os �g+ 4Imf
h�g sin � (2.69)I0Ayy � I0Ann = 14Tr nM(�(1) � n̂)(�(2) � n̂)M yo= 2(Refam�g+ j
j2 � jgj2 + jhj2) = I0CNN (2.70)I0Azz � I0All = 14Tr nM(�(1) � l̂)(�(2) � l̂)M yo= 2Ref(a�m)g� + (a +m)h� 
os �g � 4Imf
h�g sin � (2.71)I0Azx � �I0Als = �14Tr nM(�(1) � l̂)(�(2) � ŝ)M yo= �2Ref(a +m)h�g sin � � 4Imf
h�g 
os � (2.72)It 
an be shown that Azx = Axz. Again, note the minus sign in the de�nition for Azx,whi
h is taken from CNS DAC. In Ref. [23℄ the de�nition for Azx has the opposite sign.


