Chapter 2

SCATTERING OF TWO
NUCLEONS

This chapter is not meant as a thorough presentation of scattering theory for two nucleons
or even more general for two particles since that is already given at many places such as
quantum mechanics textbooks and those specializing in scattering processes, for example
Ref. [22]. In fact, compact presentations of two nucleon (2N) scattering can be found
in Refs. [23, 24, 25]. Hence, the presentation here will be even more compact and this
chapter is meant for practical purpose and to give a short summary of necessary formulas.
In addition, definitions of some terminologies and quantities used in the next chapters can

be found here.

2.1 Kinematics of the Two-Nucleon System in La-

boratory and Center of Mass Reference Frames

A proton and a neutron are commonly called nucleon. Though the proton mass m, =
938.272 MeV differs from the neutron mass m, = 939.56533 MeV, this difference is
relatively small (~ 0.14%). Therefore, the 'nucleon mass’ m may be given by the average
of m, and m,,.

Let k; and k! be the nucleon’s momentum in the laboratory reference frame (laboratory
frame) in initial and final state, respectively, where i = 1, 2 indicates the i** nucleon. The
corresponding nonrelativistic energies are denoted by E; and E, respectively. Assuming
nucleon 1 is the projectile and nucleon 2 is the target (ko = 0), the momentum situation
can be displayed by Fig. 2.1, where 0y, is the scattering angle in the laboratory frame. The

figure also shows quantities belonging to the center of mass reference frame (c.m. frame),
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acircle of radius q representing
energy conservation

Figure 2.1: The initial and final momenta, both in laboratory and c.m. frames, in a 2N

scattering process, where nucleon 1 acts as the projectile and nucleon 2 as the target

(ko = 0). The circle of radius ¢ represents the energy conservation.

i.e. the scattering angle # and the relative momentum between the two nucleons in initial

and final states, q = 1k; and q' = (k| — k}), respectively. Tt is clear that 6 = 26,4,

The total energy in the laboratory frame (Fj,,) and that in the c.m. frame (F,,,) are
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where p = %m is the reduced mass of the 2N system. FE,,, together with the energy of

motion of the center of mass of the two nucleons sum up to Ej,;, and consequently we can

get the relation between Ej, and E,,

Elab =

K

(k) +k5)?

+ EC’ITL

- —+Ecm

4dm

1
= §Elab + Ecm

= 2Ecma

(2.4)

which can also be directly seen from the fact that k; = 2q. Note that this relation between

Ei and E,p, is correct if one of the two nucleons is initially (or finally) at rest.
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2.2 Scattering Matrix and Lippmann-Schwinger Equ-

ation

The essential information of a nucleon-nucleon (NN) scattering process is contained in
the scattering matrix. There are T-matrix, S-matrix, M-matrix and these matrices are

related to each other as

S = 1-2mi§(E' — E)T (2.5)
M = —p(27)’T. (2.6)

The delta function in the expression for the S-matrix indicates that the S-matrix is an
on-the-energy-shell (on-shell) quantity whereas the other two scattering matrices are not
affected by this restriction and therefore have off-shell as well as on-shell properties. We
solve for the T-matrix in our NN scattering calculations and later use it as input for our
3N calculations, where the T-matrix appears as an off-shell quantity.

The T-matrix obeys the equation
T=V+VG,T, (2.7)

which is the Lippmann-Schwinger Equation (LSE) for the T-matrix. V is the matrix
operator of the NN potential, Go(2) = (2 — Hp) ! is the free propagator with Hy being
the free Hamiltonian and z a complex number. The scattering wave is spreading out
from the scattering center, and for an outgoing wave the corresponding free propagator
is G§ (E) = lim,_,g Go(E + i¢), where E is the energy at which the scattering occurs and
the limit can be understood as to bring z close to the physical spectrum of Hy.

The T-matrix element is defined as
T(d,o5q,0) =(d, /| T g, a), (2.8)

with a, o being the discrete quantum numbers considered, like spin and isospin, and
lq, @), |d’, /) representing the initial, final state of the 2N system, respectively. A similar

definition applies also to the NN potential matrix element
V(d,d';q,0) = (d,d|V]q, ). (2.9)
With the 2N states |q, @) being complete

Z/dq|q, @) (q,0| =1, (2.10)
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it is straightforward that the LSE for the T-matrix element, which is the main equation

in the calculations, is given by

T(q,o5q,0) =V(d,d;q,0) + Z/dq”V(q’,o/;q”,a”)GJ(Eq)T(q”,a”;q, a), (2.11)
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2.3 Cross Section and Spin Observables

Here we specify the quantum number « in the 2N state |q,«) as the magnetic spin

quantum numbers of both nucleons

|, @) = |a, msms) (2.13)

with mg; = :I:% (i =1, 2). Thus, there are four spin states which constitute a complete

basis, in which any spin state of the two nucleons can be given. A general pure state

|q,n) can be written as

D=

|q7 n> - Z a(n) (msla msZ) |q.7 mslms2> . (214)

1
Ms1,Ms2=—75

With regard to spin the state |q,n) is a vector of four components and the T-matrix
element given in Eq. (2.8) is a 4 x 4 matrix. The general spin operator for such a state is

also a 4 x 4 matrix and may be chosen as a product of two 2 x 2 matrices

=oV @0, (nv=01,23), (2.15)

v

with ¢ and o; (i = 1,2,3) being a matrix of one and the Pauli matrices, respectively:

10 01 0 —i 1 0
00 = ) o1 = ) 09 = ) 03 = ) (216)
01 10 10 0 -1

and the upper indices 1, 2 denoting the nucleon on the state of which the o, operator
works.

In experiments we deal not only with two nucleons but many more in the beam and
the target. Therefore, the state is a mixed state of pure 2N states as given in of Eq. (2.14),

and the expectation value of an observable (O) is calculated by mean of a density matrix

P
p=|n)pn(n|, (2.17)
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where p,, is the normalized probability of the n'® pure spin state according to Eq. (2.14)

a™ (mg1, mg2) [msimys) . (2.18)

Il
M-

)

1
Ms1,Ms2=—75

For instance, in the final state:
_ Tr{p;0}

0) = , 2.19
=Ty 219
with
ps = final density matrix
= Mp;M! (2.20)
p; = initial density matrix.

Using Eq. (2.19) one derives the expression for the expectation value of a general spin
observable <crl(})al(,2)>f in the final state in relation to the values <0&1)a§f)>_ in the initial

state
1{o{o) = Is (o906 Tr { Moo MIol 1o}, (2.21)

«
a:B

where I is the differential cross section summed over all possible final spin states

_~doj _Trip} 1 (1) () (1), yrt
I—;d—g—m—zazﬁ<0'a Uﬁ >iT7”{MO'a 0'/3 M} (222)
(in the last equality Eq. (2.21) is applied again).

The simplest case is if the beam and target are unpolarized and no spin measurements
in the final state are made. In this case one measures the spin averaged differential cross

section

I = iTr {Mart} (2.23)

The spin projections on a certain axis must be specified and therefore unit vectors are
needed. Since there are two reference frames - laboratory and c.m. frames - two sets of
unit vectors are defined, one set for each frame. But as can be checked in Ref. [25] for the

2N system the two sets are the same:

. L c.m. frame a, N, N x q
unit vectors for the initial state : . (2.24)
laboratory frame l,n, s
) c.m. frame P, N K
unit vectors for the final state : . (2.25)
laboratory frame I, o, ¢
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with
) ) k; x k' - qxdq
n = n=—-——--=N= , (2.26)
ki x ki la x |
1 = k=4 2.27)
§ = nxl=Nxgq (2.28)
!/
I = K -p=979 (2.29)
la+q]
,_
¢ = a'xI'=K=—+—1 (2.30)
ld' —d

In connection with a Cartesian coordinate system the beam’s momentum k; is set typically
to point along the positive z-axis and the scattered nucleon’s momentum ki is in the

xz-plane. Thus, the scattering takes places in the xz-plane and the unit vectors are

0 1 0
I1=[o0o]|, s = |0o]|, n=n= ,
1 0 0
(2.31)
sin 04 cos Oy
= 0 : § = 0
cos Oyap — sin Oy

According to Eq. (2.21) there seems to be 16 x 16 = 256 possible initial-to-final
spin transitions in a NN scattering process. Rotational, parity, time-reversal and isospin
invariances (the last one together with parity invariance lead to spin invariance), however,
forbid many transitions and moreover cause some permitted transitions to be related to
each other. Under these invariances the scattering matrix M can be expressed in terms of
a few parameters called Wolfenstein parameters [26, 23] (a, ¢, m, g, h), which depend on
the magnitudes ¢’ of final and ¢ of initial relative momenta as well as the angle between

the two momenta q' and q

M = a+c(e® +0?)-N+m(e? N)(e? . N)

+(g+ 1) (e - P)e® -P)+ (g — h) (e - K)(e® - K) (2.32)
1

a = ZTT{M} (2.33)
1

¢ = g:rr{Jwa;l)+Ma§,2>} (2.34)
1

m = -Tr{Ms{"o{?} (2.35)

4
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1

g = gTr{Mag)aa(f) + MoMeP} (2.36)
1

h = gTr{[—MU;I)U;Q) + MoMoP)cosf + [MoVo® + MoMeP]sinh}  (2.37)

Note that these expressions for the Wolfenstein parameters are for the chosen xz-scattering
frame, see Eq. (2.31). The NN scattering observables can be calculated using M directly
or the Wolfenstein parameters.

Finally, we close this chapter by showing briefly seven typical types of experiments
and the corresponding spin observables. Comprehensive descriptions of these experiments

can be found in Ref. [23]. The experiments are denoted by the reactions as

1. N2(N1,N1)N2 2. N2(N1,N1)N2 3. N2(N1,N1)N2 4. N2(N1,N1)N2
5. N2(N1,N1)N2 6. N2(N1,N1)N2 7. N2(N1,N1)N2,

where N1 and N2 stand for nucleon 1 (the projectile) and nucleon 2 (the target),
respectively, the little arrows over N1 or N2 mean that the corresponding nucleon is
polarized or that the polarization of that nucleon is measured. Let us take for example
the fifth experiment: N2(Z\71, Nl)NQ. This reaction means that a polarized projectile
(N1) is directed to an unpolarized target (N2) and finally the polarization of the re-
coil nucleon (N2) is measured. The polarization of the scattered nucleon (N1) is not
measured. Note that processes 4 and 5 are only distinguishable for a np system.

In the first experiment the beam and target are unpolarized and no spin measurement

on the outgoing nucleons are made. One measures only the spin averaged cross section

1
_ t

I, = 4TT{MM}
= a|> + |m|* + 2|c|* + 2|g|* + 2|h|%. (2.38)

In the second experiment the beam and target are unpolarized. The polarization
of the scattered nucleon is of interest and therefore after the process one measures the
spin direction of this nucleon. According to the general formula for spin observables
(Eq. (2.21)) the polarization Py = <a'(1)> = <0'(1)a(()2)> of the scattered nucleon is

P, — %I(]Tr {MMTa“)}

1
— A t (D)
= n4IOTr{MM o, }
ﬁQRe{(a +m)c*}
Iy ’

(2.39)

where I is the spin averaged cross section given in Eq. (2.38). Parity invariance affects

the process such that the polarization must be normal to the scattering plane.
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The third experiment is to measure the asymmetry A, defined as

I —1Ig
T I+ IR’

LR (2.40)

where I;, = I(0,¢) and Ir = I(0, ¢ + ) are the left-scattering and right-scattering cross
sections, respectively. A polarized beam is directed to an unpolarized target. Due to
parity invariance a contribution to the cross section arises only if the polarization is

normal to the scattering plane. The cross section is

1 3
— = (L M art
I = 4azzjo<aa ). Tr{Mo) Mt}
1
= lo+ Pi-alr {M(a™ - a)MT} (2.41)
and the left- and right-scattering cross sections are

1
I, = IO+ZPi-ﬁTr{M(o-(1)-ﬁ)MT} (2.42)

1
Ip = IO—ZPi-ﬁTr{M(o-(l) ) MY (2.43)

Therefore,
P;-alr {M(c® ) M'}

AT,
= P, -nA,, (2.44)

with

A, = %I(]Tr{M(o-(l)-ﬁ)MT}
2Re{(a + m)c*}
Iy

This quantity A, called analyzing power is often denoted by A,, since n = g for the
typical scattering frame given in Eq. (2.31).
In experiment 4 one starts with a polarized beam and an unpolarized target and finally

measures the polarization of the scattered nucleon, Py = <a'(1)>

IP; = ié<0&1)>iTr{MgS)MTo-(l)}

= I,Po+ iPi Tr{Me®WMicM}
= I {a[P + D(P;-0)] +1'[A'(P; - 1) + R (P; - §)]
+§ [AP;- 1)+ R(P; - 8)] }. (2.46)
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Here we meet other spin observables, summarized in the depolarization tensor D;;, which
is defined as

A
.

1 .
IyDy; = Tr {M(aW - j)M (D D)}, (2.47)

and the observables D, R, R', A, A" appearing in the polarization ]3f are

1
I,D = IyD,, = ZTr{M(cr(l)-ﬂ)M*(a@ 1)}
= laf* +m|* + 2[c* — 2|g|* — 2[h[? (2.48)

1
IR =1,Dy, = ZTT{M(a“)-é)MT(a(” -§)}

6 6
= (la|* — |m|* — 4Re{gh*}) cos 3 2Im{(a — m)*c} sin 3 (2.49)

1 .
IR = I,Dy, = ZTr{M(cr(U-é)M*(a@-1’)}

= (la]* = |m|* + 4Re{gh*}) sing +2Im{(a —m)*c} cosg (2.50)

1 .
LhA=ILDy = ZTr{M(a(l)-1)Mf(cr<1>-é’)}

0 7
= —(la]* = |m|* — 4Re{gh*})sin o 2Im{(a —m)*c} cos 2 (2.51)
1 “ .
LA’ =Dy = Tr {M(a® )M (W 1)}
6 6
= (la]* — |m|* + 4Re{gh*}) cos 3 2Im{(a —m)*c} sin 3" (2.52)
Experiment 5 is similar to experiment 4 and can be distinguished only in a np system.

One starts with a polarized beam and an unpolarized target but finally one measures the

polarization of the recoil nucleon Py = <0'(2)>

IP; = ié<ag)>iTr{MaS)MTa(2)}

= IyPy+ iPi Tr{MeOMic?}
= Iy {a[Py+ Dy(P; - 0)] +1'[4,(P; - 1) + Ry(P; - 8)]
+§ [A(P; 1) + Ry(P; - 9)]} (2.53)

_ 2Re{(a + m)c*}
I '

P = 7y {MM(a® - h)}

2.54
i (2.54)

Here we have again new spin observables, summarized in the polarization-transfer tensor

K

ij, which is defined as

LK = Tr{M(@® - j)Mi(e® )}, (2.55)

N
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and the observables Dy, R;, R}, A;, A} appearing in the polarization P are

1
LD, = LKy = <Tr{M(@® a)M(c? )}

= S(Refam} + e+ g — 1) (2.56)
IR, = LKy, = iTr {M(a-8) M (e - 1)}
= 2Re{(a+m)g" + (a —m)h™}sin g + 4Im{cg*} cos g (2.57)
LR, = Ky, = —Tr {M(aW )Mt (e - &)}
= 2Re{(a+m)g* — (a —m)h*} cos g — 4Im{cg*} sin g (2.58)
LA, = —I)Ky = —iTr {M(e® )M (e® 1)}
= —2Re{(a+ m)g" + (a — m)h*} cos g + 4Im{cg*} sing (2.59)
LA = LKy = —%Tr {M(eV )M (e? - 4)]
= 2Re{(a+m)g* — (a —m)h*}sin g + 4Im{cg*} cos g (2.60)

Note the minus sign in the definitions for A; and A}. These are the definitions given in Cen-
ter for Nuclear Studies Data Analysis Center (CNS DAC, http://gwdac.phys.gwu.edu/).
We take these definitions since later we compare with experimental data from this site. In
Ref. [23] the definitions for A, and A} have the opposite sign. In case of identical particles
these expressions are the same as the ones given in Eqs. (2.48)-(2.52) if one replaces 6 by
m — 0 (see for instance [23]).

In experiment 6 the beam and target are unpolarized. In the final state the spins of
the two outgoing nucleons are simultaneously measured

I <a'(1)a'(2)>f = %Tr {MMTO-(I)O.@)}

= Iy (CyxNN + CppPP + Cx KK + Cicp(PK + KP)) . (2.61)

Cjj is called the spin correlation parameter and is defined as

~

1 ~
1yCyj = T (MMt (e i) (e )} (2.62)

ij =

ACCOI'dngly, CNN; Cpp, CKK, CKP are

IOy = %TT{MMT(J(” N)(e® - N)} = 2(Re{am*} + |c* — |g” + |h*) (2.63)
I,Cpp = %TT{MMT(AUP)(J(?)-P)}:2Re{(a—m)g*+(a+m)h*} (2.64)
LCri = %Tr (MM (60 - K)(0® - K)} = 2Re{(a — m)g" — (a+m)h*}  (2.65)
LCrxp = iTr{MMT(a-(l) <) (0@ - P)} = —4Tmeh’}. (2.66)
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It can be shown that Cpxr = Cxp.
In the last experiment both the beam and target are polarized and no spin measure-

ments are made in the final state. One measures the cross section

I = % Z <0&1)0[(32)>i Tr {MO'S)O'Ef)MJ[}

Q,

y
Py = <a,(€1)al(2)>i are the polarization and tensor polarization in initial state, respectively.

The indices are for the scattering frame given in Eq. (2.31). P, = <ag(/1)>, = <cr(2)>, and

A, is the already shown analyzing power. The other observables are the spin correlation

parameters A;;’s, which are also called tensor analyzing powers defined as

Aij = %I[]Tr {M(aW -i)(e® - Mt} (2.68)
Accordingly, A, Ayy, A,y A,y are
IpAye = IhAys = iTr {M(a® - 8)(c® - 8)MT}
= 2Re{(a —m)g* — (a +m)h* cos 0} + 4Im{ch*} sin@ (2.69)
IpAy, = A, = iTr {M(cV - 8)(c® -n) M}
= 2(Re{am*} + |c]> — |g|* + |h|*) = [,Cnn (2.70)
LA, =1)A, = iTr {M(a® -1)(e® - 1)MT}
= 2Re{(a —m)g" + (a + m)h* cos @} — 4Im{ch*}sin@ (2.71)
A, = —IA, = —iTr {M(a® - 1)(a® - 8)MT}
= —2Re{(a+ m)h*}sinf — 4Im{ch*} cosf (2.72)

It can be shown that A,, = A,,. Again, note the minus sign in the definition for A,,,
which is taken from CNS DAC. In Ref. [23] the definition for A,, has the opposite sign.



